Assimilation of Global Radar Backscatter and Radiometer Brightness Temperature Observations to Improve Soil Moisture and Land Evaporation Estimates

Abstract Active radar backscatter ( σ °) observations from the Advanced Scatterometer (ASCAT) and passive radiometer brightness temperature (TB) observations from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated either individually or jointly into the Global Land Evaporation Amsterdam Model (GLEAM) to improve its simulations of soil moisture and land evaporation. To enable σ ° and TB assimilation, GLEAM is coupled to the Water Cloud Model and the L-band Microwave Emission from the Biosphere (L-MEB) model. The innovations, i.e. differences between observations and simulations, are mapped onto the model soil moisture states through an Ensemble Kalman Filter. The validation of surface (0–10 cm) soil moisture simulations over the period 2010–2014 against in situ measurements from the International Soil Moisture Network (ISMN) shows that assimilating σ ° or TB alone improves the average correlation of seasonal anomalies (R an ) from 0.514 to 0.547 and 0.548, respectively. The joint assimilation further improves R an to 0.559. Associated enhancements in daily evaporative flux simulations by GLEAM are validated based on measurements from 22 FLUXNET stations. Again, the singular assimilation improves R an from 0.502 to 0.536 and 0.533, respectively for σ ° and TB, whereas the best performance is observed for the joint assimilation (R an  = 0.546). These results demonstrate the complementary value of assimilating radar backscatter observations together with brightness temperatures for improving estimates of hydrological variables, as their joint assimilation outperforms the assimilation of each observation type separately.

[1]  Yann Kerr,et al.  Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission , 2001, IEEE Trans. Geosci. Remote. Sens..

[2]  R. Scott Using watershed water balance to evaluate the accuracy of eddy covariance evaporation measurements for three semiarid ecosystems , 2010 .

[3]  Klaus Scipal,et al.  Azimuthal anisotropy of scatterometer measurements over land , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Thomas J. Jackson,et al.  Profile Soil Moisture from Surface Measurements , 1980 .

[5]  B. Choudhury,et al.  Effect of surface roughness on the microwave emission from soils , 1979 .

[6]  T. Schmugge,et al.  Passive microwave sensing of soil moisture under vegetation canopies , 1982 .

[7]  A. Al Bitar,et al.  Global-Scale Comparison of Passive (SMOS) and Active (ASCAT) Satellite Based Microwave Soil Moisture Retrievals with Soil Moisture Simulations (MERRA-Land) , 2014 .

[8]  Huidong Jin,et al.  Continental satellite soil moisture data assimilation improves root-zone moisture analysis for water resources assessment , 2014 .

[9]  Ahmad Al Bitar,et al.  SMOS soil moisture assimilation for improved hydrologic simulation in the Murray Darling Basin, Australia , 2015 .

[10]  Clemens Simmer,et al.  Effects of the Near-Surface Soil Moisture Profile on the Assimilation of L-band Microwave Brightness Temperature , 2006 .

[11]  Arnaud Mialon,et al.  The SMOS Soil Moisture Retrieval Algorithm , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[12]  N. Verhoest,et al.  GLEAM v3: satellite-based land evaporation and root-zone soil moisture , 2016 .

[13]  Ahmad Al Bitar,et al.  Assimilation of SMOS soil moisture and brightness temperature products into a land surface model , 2016 .

[14]  Diego G. Miralles,et al.  Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation , 2014 .

[15]  S. Wofsy,et al.  Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest , 2007 .

[16]  Jiancheng Shi,et al.  The Soil Moisture Active Passive (SMAP) Mission , 2010, Proceedings of the IEEE.

[17]  Ahmad Al Bitar,et al.  Optimization of a Radiative Transfer Forward Operator for Simulating SMOS Brightness Temperatures over the Upper Mississippi Basin , 2015 .

[18]  G. Lannoy,et al.  Global Calibration of the GEOS-5 L-Band Microwave Radiative Transfer Model over Nonfrozen Land Using SMOS Observations , 2013 .

[19]  Gabrielle De Lannoy,et al.  Ensemble‐based assimilation of discharge into rainfall‐runoff models: A comparison of approaches to mapping observational information to state space , 2009 .

[20]  R. Koster,et al.  Global Soil Moisture from Satellite Observations, Land Surface Models, and Ground Data: Implications for Data Assimilation , 2004 .

[21]  Ruth S. DeFries,et al.  Estimation of tree cover using MODIS data at global, continental and regional/local scales , 2005 .

[22]  Rajat Bindlish,et al.  Parameterization of vegetation backscatter in radar-based, soil moisture estimation , 2001 .

[23]  D. McLaughlin,et al.  Hydrologic Data Assimilation with the Ensemble Kalman Filter , 2002 .

[24]  Wade T. Crow,et al.  The Optimality of Potential Rescaling Approaches in Land Data Assimilation , 2013 .

[25]  Misako Kachi,et al.  Global Change Observation Mission (GCOM) for Monitoring Carbon, Water Cycles, and Climate Change , 2010, Proceedings of the IEEE.

[26]  Yi Y. Liu,et al.  Error characterisation of global active and passive microwave soil moisture datasets. , 2010 .

[27]  Derek Karssenberg,et al.  The suitability of remotely sensed soil moisture for improving operational flood forecasting , 2013 .

[28]  Niko E. C. Verhoest,et al.  On the Retrieval of Soil Moisture in Wheat Fields From L-Band SAR Based on Water Cloud Modeling, the IEM, and Effective Roughness Parameters , 2011, IEEE Geoscience and Remote Sensing Letters.

[29]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[30]  Global Soil Data Task,et al.  Global Gridded Surfaces of Selected Soil Characteristics (IGBP-DIS) , 2000 .

[31]  T. Holmes,et al.  Global land-surface evaporation estimated from satellite-based observations , 2010 .

[32]  A. Fung Microwave Scattering and Emission Models and their Applications , 1994 .

[33]  Yudong Tian,et al.  Estimating evapotranspiration with land data assimilation systems , 2011 .

[34]  A. Robock,et al.  The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements , 2011 .

[35]  G. Evensen,et al.  Analysis Scheme in the Ensemble Kalman Filter , 1998 .

[36]  Soroosh Sorooshian,et al.  Optimal use of the SCE-UA global optimization method for calibrating watershed models , 1994 .

[37]  Harrie-Jan Hendricks Franssen,et al.  Soil moisture and soil properties estimation in the Community Land Model with synthetic brightness temperature observations , 2014 .

[38]  Richard J. Blakeslee,et al.  Performance Assessment of the Optical Transient Detector and Lightning Imaging Sensor. Part 2; Clustering Algorithm , 2007 .

[39]  Niko E. C. Verhoest,et al.  Improving terrestrial evaporation estimates over continental Australia through assimilation of SMOS soil moisture , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[40]  T. Hamill Interpretation of Rank Histograms for Verifying Ensemble Forecasts , 2001 .

[41]  Markus Reichstein,et al.  Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis , 2013 .

[42]  J. Gash An analytical model of rainfall interception by forests , 1979 .

[43]  Luca Brocca,et al.  Assimilation of Surface- and Root-Zone ASCAT Soil Moisture Products Into Rainfall–Runoff Modeling , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[44]  Ahmad Al Bitar,et al.  Copula-Based Downscaling of Coarse-Scale Soil Moisture Observations With Implicit Bias Correction , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[45]  Y. Kerr,et al.  Effective soil moisture sampling depth of L-band radiometry: A case study , 2010 .

[46]  B. Barkstrom,et al.  Clouds and the Earth's Radiant Energy System (CERES): An Earth Observing System Experiment , 1996 .

[47]  Matthew F. McCabe,et al.  The WACMOS-ET project – Part 2: Evaluation of global terrestrial evaporation data sets , 2015 .

[48]  Christian Bernhofer,et al.  Evapotranspiration amplifies European summer drought , 2013 .

[49]  Yong Q. Tian,et al.  Estimating Basal Area and Stem Volume for Individual Trees from Lidar Data , 2007 .

[50]  Y. Hong,et al.  The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales , 2007 .

[51]  W. Wagner,et al.  Improving runoff prediction through the assimilation of the ASCAT soil moisture product , 2010 .

[52]  M. Susan Moran,et al.  Carbon dioxide exchange in a semidesert grassland through drought‐induced vegetation change , 2010 .

[53]  A. Al Bitar,et al.  Global-scale evaluation of two satellite-based passive microwave soil moisture datasets (SMOS and AMSR-E) with respect to Land Data Assimilation System estimates , 2014, Remote Sensing of Environment.

[54]  H. Madsen,et al.  Assimilation of SMOS‐derived soil moisture in a fully integrated hydrological and soil‐vegetation‐atmosphere transfer model in Western Denmark , 2014 .

[55]  R. Jeu,et al.  Global canopy interception from satellite observations , 2010 .

[56]  Diego G. Miralles,et al.  Magnitude and variability of land evaporation and its components at the global scale , 2011 .

[57]  David P. Billesbach,et al.  Spatiotemporal Variations in Growing Season Exchanges of CO2, H2O, and Sensible Heat in Agricultural Fields of the Southern Great Plains , 2007 .

[58]  W. Crow,et al.  The assimilation of remotely sensed soil brightness temperature imagery into a land surface model using Ensemble Kalman filtering: a case study based on ESTAR measurements during SGP97 , 2003 .

[59]  W. Wagner,et al.  A Method for Estimating Soil Moisture from ERS Scatterometer and Soil Data , 1999 .

[60]  Stéphane Bélair,et al.  A Global Root-Zone Soil Moisture Analysis Using Simulated L-band Brightness Temperature in Preparation for the Hydros Satellite Mission , 2006 .

[61]  Yi Y. Liu,et al.  Global long‐term passive microwave satellite‐based retrievals of vegetation optical depth , 2011 .

[62]  Matthew F. McCabe,et al.  The GEWEX LandFlux project: evaluation of model evaporation using tower-based and globally gridded forcing data , 2015 .

[63]  Thomas J. Jackson,et al.  Estimating Effective Roughness Parameters of the L-MEB Model for Soil Moisture Retrieval Using Passive Microwave Observations From SMAPVEX12 , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[64]  Niko E. C. Verhoest,et al.  Assessment of model uncertainty for soil moisture through ensemble verification , 2006 .

[65]  P. Houser,et al.  Assimilation and downscaling of satellite observed soil moisture over the Little River Experimental Watershed in Georgia, USA , 2013 .

[66]  F. Ulaby,et al.  Vegetation modeled as a water cloud , 1978 .

[67]  Arnaud Mialon,et al.  Global-scale surface roughness effects at L-band as estimated from SMOS observations. , 2016 .

[68]  W. Wagner,et al.  Evaluation of the ESA CCI soil moisture product using ground-based observations , 2015 .

[69]  Jeffrey P. Walker,et al.  Soil moisture retrievals at L-band using a two-step inversion approach (COSMOS/NAFE'05 Experiment) , 2009 .

[70]  Matthias Drusch,et al.  Global Automated Quality Control of In Situ Soil Moisture Data from the International Soil Moisture Network , 2013 .

[71]  William L. Smith,et al.  AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems , 2003, IEEE Trans. Geosci. Remote. Sens..

[72]  Yi Y. Liu,et al.  Global vegetation biomass change (1988–2008) and attribution to environmental and human drivers , 2013 .

[73]  Van Te Chow,et al.  Handbook of applied hydrology : a compendium of water-resources technology , 1964 .

[74]  L. Isaksen,et al.  A simplified Extended Kalman Filter for the global operational soil moisture analysis at ECMWF , 2013 .

[75]  Yann Kerr,et al.  Two-year global simulation of L-band brightness temperatures over land , 2003, IEEE Trans. Geosci. Remote. Sens..

[76]  Qin Li,et al.  Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations , 2003, IEEE Trans. Geosci. Remote. Sens..

[77]  Kamal Sarabandi,et al.  An empirical model and an inversion technique for radar scattering from bare soil surfaces , 1992, IEEE Trans. Geosci. Remote. Sens..

[78]  Gabrielle De Lannoy,et al.  Global Assimilation of Multiangle and Multipolarization SMOS Brightness Temperature Observations into the GEOS-5 Catchment Land Surface Model for Soil Moisture Estimation , 2016 .

[79]  Michael H. Cosh,et al.  Potential of bias correction for downscaling passive microwave and soil moisture data , 2015 .

[80]  W. Oechel,et al.  FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities , 2001 .

[81]  Yann Kerr,et al.  A simple parameterization of the L-band microwave emission from rough agricultural soils , 2001, IEEE Trans. Geosci. Remote. Sens..

[82]  Thomas J. Jackson,et al.  Soil moisture retrieval from AMSR-E , 2003, IEEE Trans. Geosci. Remote. Sens..

[83]  Rolf H. Reichle,et al.  Assimilation of passive and active microwave soil moisture retrievals , 2012 .

[84]  G. D. Jenerette,et al.  Effects of seasonal drought on net carbon dioxide exchange from a woody-plant-encroached semiarid grassland , 2009 .

[85]  M. Drinkwater,et al.  The advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform: A follow on for European wind scatterometers , 2002 .

[86]  Y. Kerr,et al.  L-band Microwave Emission of the Biosphere (L-MEB) Model: Description and calibration against experimental data sets over crop fields , 2007 .

[87]  Niels Skou,et al.  A soil moisture and temperature network for SMOS validation in Western Denmark , 2011 .

[88]  N. Verhoest,et al.  ESA's Soil Moisture and Ocean Salinity mission: From science to operational applications , 2016 .

[89]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[90]  Rolf Reichle,et al.  Variational data assimilation of microwave radiobrightness observations for land surface hydrology applications , 2001, IEEE Trans. Geosci. Remote. Sens..

[91]  Wolfgang Wagner,et al.  On the Soil Roughness Parameterization Problem in Soil Moisture Retrieval of Bare Surfaces from Synthetic Aperture Radar , 2008, Sensors.

[92]  D. Baldocchi,et al.  Inter-annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in California , 2007 .

[93]  Arnaud Mialon,et al.  Soil Moisture Estimations Based on Airborne CAROLS L-Band Microwave Data , 2011, Remote. Sens..

[94]  R. Koster,et al.  Assessing the Impact of Horizontal Error Correlations in Background Fields on Soil Moisture Estimation , 2003 .

[95]  Robain De Keyser,et al.  Can ASCAT-derived soil wetness indices reduce predictive uncertainty in well-gauged areas? A comparison with in situ observed soil moisture in an assimilation application , 2012 .

[96]  Ahmad Al Bitar,et al.  Comparison Between SMOS, VUA, ASCAT, and ECMWF Soil Moisture Products Over Four Watersheds in U.S. , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[97]  Peter Troch,et al.  Assimilation of active microwave observation data for soil moisture profile estimation , 2000 .

[98]  V. H. Kaupp,et al.  Generalized refractive mixing dielectric model for moist soils , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[99]  C. Priestley,et al.  On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters , 1972 .

[100]  G. Guyot,et al.  Estimating surface soil moisture and leaf area index of a wheat canopy using a dual-frequency (C and X bands) scatterometer , 1993 .

[101]  F. Valente,et al.  Modelling interception loss for two sparse eucalypt and pine forests in central Portugal using reformulated Rutter and Gash analytical models , 1997 .

[102]  Arnaud Mialon,et al.  SMOS CATDS level 3 global products over land , 2010, Remote Sensing.