High Power Klystrons: Theory and Practice at the Stanford Linear Accelerator CenterPart I

This is Part I of a two-part report on design and manufacturing methods used at SLAC to produce accelerator klystrons. Chapter 1 begins with the history and applications for klystrons, in both of which Stanford University was extensively involved. The remaining chapters review the theory of klystron operation, derive the principal formulae used in their design, and discuss the assumptions that they involve. These formulae are subsequently used in small-signal calculations of the frequency response of a particular klystron, whose performance is also simulated by two different computer codes. The results of calculations and simulations are compared to the actual performance of the klystron.

[1]  George Caryotakis,et al.  CURRENT STATUS OF THE NEXT LINEAR COLLIDER X-BAND KLYSTRON DEVELOPMENT PROGRAM * , 2004 .

[2]  W. W. Hansen,et al.  A linear electron accelerator. , 1948, The Review of scientific instruments.

[3]  G. Caryotakis,et al.  1.2 MW KLYSTRON FOR ASYMMETRIC STORAGE RING B FACTORY , 1995, Proceedings Particle Accelerator Conference.

[4]  Hiroshi Yonezawa,et al.  A ONE-DIMENSIONAL DISK MODEL SIMULATION FOR KLYSTRON DESIGN , 1984 .

[5]  Herbert Döring Der Heil'sche Generator, ein spezielles Klystron , 1987 .

[6]  S. Choroba,et al.  Performance of an S-Band Klystron at an Output Power of 200MW , 1998 .

[7]  J. R. Pierce,et al.  Thermionic Valves. Their Theory and Design , 1954 .

[8]  S. Ramo The Electronic-Wave Theory of Velocity-Modulation Tubes , 1939, Proceedings of the IRE.

[9]  G.M. Branch,et al.  Electron beam coupling in interaction gaps of cylindrical symmetry , 1961, IRE Transactions on Electron Devices.

[10]  Tore Wessel-Berg,et al.  Space-charge wave theory of interaction gaps and multi-cavity klystrons with extended fields , 1960 .

[11]  H. W. Bode,et al.  Network analysis and feedback amplifier design , 1945 .

[12]  P. J. Wallis,et al.  Principles of velocity modulation , 1946 .

[13]  M. Chodorow,et al.  A high-efficiency klystron with distributed interaction , 1961, IRE Transactions on Electron Devices.

[14]  H. J. Hagger,et al.  Nonlinear Electron-Wave Interaction Phenomena , 1965 .

[15]  S.E. Webber Large signal bunching of electron beams by standing-wave and traveling-wave systems , 1959, IRE Transactions on Electron Devices.

[16]  Yvonne Lamoreaux,et al.  Principles of Electron Tubes , 1944 .

[17]  R. D. Richtmyer,et al.  On Resonators Suitable for Klystron Oscillators , 1939 .

[18]  Darrell Robinson,et al.  X-BAND CW GENERATOR DEVELOPMENT. , 1968 .

[19]  D. L. Burke The NLC technical program , 1998 .

[20]  R. Warnecke,et al.  Les tubes éléctroniques a commande par modulation de vitesse , 1951 .

[21]  H. Bohlen,et al.  Operation of a 1.3 GHz, 10 MW multiple beam klystron , 2004, Fifth IEEE International Vacuum Electronics Conference (IEEE Cat. No.04EX786).

[22]  G.M. Branch,et al.  Plasma frequency reduction factors in electron beams , 1955, IRE Transactions on Electron Devices.