Contour error pre-compensation for five-axis high speed machining: offline gain adjustment approach

This paper presents an offline gain adjustment (OGA) approach to reduce contour error in five-axis high speed machining. The proposed contour error formulation is based on the estimation of tool contact points and the OGA is inspired from the idea of model predictive control (MPC). The control gains used in the position loop of servo drives are optimally adjusted offline to reduce the contour error for the considered trajectory. The obtained gain profiles are computed preserving axis kinematic limitations, stability criterion of servo drives, and the motor current constraints. The OGA is developed thanks to a validated machine simulator. The simulation results prove that the OGA reduces significantly the contour error in five-axis high speed machining.

[1]  Xavier Beudaert,et al.  Direct trajectory interpolation on the surface using an open CNC , 2014 .

[2]  Masayoshi Tomizuka,et al.  Feedforward Tracking Controller Design Based on the Identification of Low Frequency Dynamics , 1993 .

[3]  Chinedum E. Okwudire,et al.  Pre-compensation of servo contour errors using a model predictive control framework , 2015 .

[4]  Carlos Bordons Alba,et al.  Model Predictive Control , 2012 .

[5]  Kai Tang,et al.  Efficiency-optimal iso-planar tool path generation for five-axis finishing machining of freeform surfaces , 2017, Comput. Aided Des..

[6]  Yusuf Altintas,et al.  High speed contouring control strategy for five-axis machine tools , 2010 .

[7]  Lie Tang,et al.  Multiaxis Contour Control—the State of the Art , 2013, IEEE Transactions on Control Systems Technology.

[8]  Didier Dumur,et al.  Complex form machining with axis drive predictive control , 2008 .

[9]  Yusuf Altintas,et al.  Virtual CNC system. Part II. High speed contouring application , 2006 .

[10]  Arturo Y. Jaen-Cuellar,et al.  PID-Controller Tuning Optimization with Genetic Algorithms in Servo Systems , 2013 .

[11]  Xavier Beudaert,et al.  Feedrate interpolation with axis jerk constraints on 5-axis NURBS and G1 tool path , 2012 .

[12]  Didier Dumur,et al.  Feed drive modelling for the simulation of tool path tracking in multi-axis High Speed Machining , 2011, ArXiv.

[13]  Xiao-Shan Gao,et al.  Linear programming and windowing based feedrate optimization for spline toolpaths , 2017 .

[14]  Ming-Yang Cheng,et al.  Contouring accuracy improvement using a tangential contouring controller with a fuzzy logic-based feedrate regulator , 2009 .

[15]  Yusuf Altintas,et al.  Integrated Five-Axis Trajectory Shaping and Contour Error Compensation for High-Speed CNC Machine Tools , 2014, IEEE/ASME Transactions on Mechatronics.

[16]  Hélène Chanal,et al.  Model-based method for feed drive tuning applied to serial machine tool , 2018 .

[17]  Yoram Koren,et al.  Variable-Gain Cross-Coupling Controller for Contouring , 1991 .

[18]  Günter Pritschow,et al.  On the Influence of the Velocity Gain Factor on the Path Deviation , 1996 .

[19]  Marko Bacic,et al.  Model predictive control , 2003 .

[20]  Ke Zhang,et al.  Pre-compensation of contour errors in five-axis CNC machine tools , 2013 .

[21]  Yusuf Altintas,et al.  Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design , 2000 .

[22]  Berend Denkena,et al.  Virtual process systems for part machining operations , 2014 .

[23]  Yusuf Altintas,et al.  High speed CNC system design. Part III: high speed tracking and contouring control of feed drives , 2001 .

[24]  Didier Dumur,et al.  Receding Horizon Based Offline Gain Adjustment For Contour Error Reduction In High Speed Milling , 2017 .

[25]  Li-Min Zhu,et al.  Real-time local smoothing for five-axis linear toolpath considering smoothing error constraints , 2018 .

[26]  Didier Dumur,et al.  Offline gain adjustment with constraints for contour error reduction in high speed milling , 2016, 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM).

[27]  Didier Dumur,et al.  Hierarchical Predictive Control within an Open Architecture Virtual Machine Tool , 2006 .

[28]  Masayoshi Tomizuka,et al.  Contouring control of machine tool feed drive systems: a task coordinate frame approach , 2001, IEEE Trans. Control. Syst. Technol..

[29]  Benjamin J. Southwell,et al.  Human Object Recognition Using Colour and Depth Information from an RGB-D Kinect Sensor , 2013 .

[30]  George W. Younkin Industrial servo control systems : fundamentals and applications , 1996 .

[31]  Naoki Uchiyama,et al.  Discrete-time model predictive contouring control for biaxial feed drive systems and experimental verification , 2011 .

[32]  Christophe Tournier,et al.  Iso-scallop tool path generation in 5-axis milling , 2005 .

[33]  Jixiang Yang,et al.  A generalized on-line estimation and control of five-axis contouring errors of CNC machine tools , 2015 .

[34]  Yusuf Altintas,et al.  Sliding Mode Controller Design for High Speed Feed Drives , 2000 .

[35]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .