Global Change Observation Mission (GCOM) for Monitoring Carbon, Water Cycles, and Climate Change

The Japan Aerospace Exploration Agency (JAXA) is pursuing the Global Change Observation Mission (GCOM) that will inherit the Advanced Earth Observing Satellite-II (ADEOS-II) mission and develop into long-term monitoring. GCOM is not the name of a single satellite, but of a mission that consists of two series of medium-size satellites, GCOM-W (Water) and GCOM-C (Climate), and three generations of each satellite series to continue the observations for 10 to 15 years. The Advanced Microwave Scanning Radiometer-2 (AMSR2) will be the single instrument on the GCOM-W1 satellite, which is the first satellite of the GCOM series. The second satellite will be GCOM-C1, which will carry the Second-generation Global Imager (SGLI). GCOM-W will mainly contribute to the observations related to global water and energy circulation, while GCOM-C will contribute to the measurements related to the carbon cycle and radiation budget. Current target launch years are calendar year 2011 for GCOM-W1 and 2014 for C1.

[1]  Hiroshi Ichikawa,et al.  Wind Speed and Latent Heat Flux Retrieved by Simultaneous Observation of Multiple Geophysical Parameters by AMSR-E , 2009 .

[2]  Sonoyo Mukai,et al.  Retrieval algorithm for atmospheric aerosols based on multi-angle viewing of ADEOS/POLDER , 1999 .

[3]  M. Noguer,et al.  Climate change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change , 2002 .

[4]  W. Liu,et al.  Estimating moisture transport over oceans using space‐based observations , 2005 .

[5]  J. Comiso,et al.  Trends in the sea ice cover using enhanced and compatible AMSR‐E, SSM/I, and SMMR data , 2008 .

[6]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[7]  Yoshiaki Honda,et al.  The possibility of aerosol correction over land using ADEOS-II GLI 380nm reflectance , 2006, SPIE Optics + Photonics.

[8]  Keiji Imaoka,et al.  The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), NASDA's contribution to the EOS for global energy and water cycle studies , 2003, IEEE Trans. Geosci. Remote. Sens..

[9]  Keiji Imaoka,et al.  Radio-frequency Interference Signals in the AMSR and Aircraft C-band Measurements , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[10]  Yoshiaki Honda,et al.  Global environment monitoring using the next generation satellite sensor, SGLI/GCOM-C , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[11]  Joji Ishizaka,et al.  Size-Fractionated Primary Production Estimated by a Two-Phytoplankton Community Model Applicable to Ocean Color Remote Sensing , 2005 .

[12]  Joel T. Johnson,et al.  Airborne radio-frequency interference studies at C-band using a digital receiver , 2006, IEEE Trans. Geosci. Remote. Sens..

[13]  E. O'connor,et al.  The CloudSat mission and the A-train: a new dimension of space-based observations of clouds and precipitation , 2002 .

[14]  Kanako Muramatsu,et al.  Estimating and Validating the Net Primary Production of Vegetation using ADEOS-II/GLI Global Mosaic and 250-m Spatial Resolution Data , 2009 .

[15]  S. Fukuda,et al.  Overview and Science Highlights of the ADEOS-II/GLI Project , 2009 .

[16]  D. Entekhabi,et al.  Soil Moisture Active/Passive (SMAP) Mission concept , 2008, Optical Engineering + Applications.

[17]  Michele Scardi,et al.  A comparison of global estimates of marine primary production from ocean color , 2006 .

[18]  Hideaki Takenaka,et al.  Aerosol and Cloud Validation System Based on SKYNET Observations : Estimation of Shortwave Radiation Budget Using ADEOS-II/GLI Data , 2009 .

[19]  W. Timothy Liu,et al.  Determination of Monthly Mean Humidity in the Atmospheric Surface Layer over Oceans from Satellite Data , 1984 .

[20]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[21]  J. Houghton,et al.  Climate change 2001 : the scientific basis , 2001 .

[22]  Shoichi Kizu,et al.  Japanese Ocean Flux Data Sets with Use of Remote Sensing Observations (J-OFURO) , 1999 .

[23]  Teruo Aoki,et al.  Effects of snow physical parameters on shortwave broadband albedos , 2003 .

[24]  Li Li,et al.  Global survey and statistics of radio-frequency interference in AMSR-E land observations , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Joji Ishizaka,et al.  Ocean Color Research for Global Imager (GLI) on Advanced Earth Observation Satellite-II (ADEOS-II) , 2009 .

[26]  Koji Kajiwara,et al.  The use of multiangular reflectance for remote sensing of land vegetation , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[27]  Teruyuki Nakajima,et al.  Near-Global Scale Retrieval of the Optical and Microphysical Properties of Clouds from Midori-II GLI and AMSR Data , 2009 .

[28]  Misako Kachi,et al.  Global Precipitation Map Using Satellite-Borne Microwave Radiometers by the GSMaP Project: Production and Validation , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[29]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[30]  Teruo Aoki,et al.  ADEOS-II/GLI snow/ice products — Part III: Retrieved results , 2007 .

[31]  Manuel Martín-Neira,et al.  SMOS: The Payload , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Kazuhiro Tanaka,et al.  Design challenge on forthcoming SGLI boarded on GCOM-C , 2007, SPIE Remote Sensing.

[33]  T. N. Krishnamurti,et al.  The status of the tropical rainfall measuring mission (TRMM) after two years in orbit , 2000 .

[34]  Keiji Imaoka,et al.  Improvement of the AMSR-E Algorithm for Soil Moisture Estimation by Introducing a Fractional Vegetation Coverage Dataset Derived from MODIS Data , 2009 .

[35]  Teruo Aoki,et al.  ADEOS-II/GLI Snow/Ice Products and the Scientific Implications , 2009 .