Bmi1 controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma.

[1]  S. Mörk,et al.  Giant cell glioblastoma and pleomorphic xanthoastrocytoma. , 2009, Archives of pathology & laboratory medicine.

[2]  B. Scheithauer,et al.  The 2007 WHO Classification of Tumours of the Central Nervous System , 2007, Acta Neuropathologica.

[3]  Irving L Weissman,et al.  Bmi‐1‐Green Fluorescent Protein‐Knock‐In Mice Reveal the Dynamic Regulation of Bmi‐1 Expression in Normal and Leukemic Hematopoietic Cells , 2007, Stem cells.

[4]  Hongjuan Cui,et al.  Bmi-1 is essential for the tumorigenicity of neuroblastoma cells. , 2007, The American journal of pathology.

[5]  I. Weissman,et al.  Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma , 2007, Proceedings of the National Academy of Sciences.

[6]  A Heerschap,et al.  Development of luciferase tagged brain tumour models in mice for chemotherapy intervention studies. , 2006, European journal of cancer.

[7]  J. Massagué,et al.  Cancer Metastasis: Building a Framework , 2006, Cell.

[8]  H. Ding,et al.  Bmi-1 Regulates the Differentiation and Clonogenic Self-renewal of I-type Neuroblastoma Cells in a Concentration-dependent Manner* , 2006, Journal of Biological Chemistry.

[9]  Eric C. Holland,et al.  Mouse Models of Brain Tumors and Their Applications in Preclinical Trials , 2006, Clinical Cancer Research.

[10]  L. Liu,et al.  Loss of the human polycomb group protein BMI1 promotes cancer-specific cell death , 2006, Oncogene.

[11]  J. Zeitlinger,et al.  Polycomb complexes repress developmental regulators in murine embryonic stem cells , 2006, Nature.

[12]  Kristian Helin,et al.  Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. , 2006, Genes & development.

[13]  Megan F. Cole,et al.  Control of Developmental Regulators by Polycomb in Human Embryonic Stem Cells , 2006, Cell.

[14]  Michel Bellis,et al.  Chromosomal Distribution of PcG Proteins during Drosophila Development , 2006, PLoS biology.

[15]  B. Steensel,et al.  Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster , 2006, Nature Genetics.

[16]  M. Sofroniew,et al.  Phenotypic and functional heterogeneity of GFAP‐expressing cells in vitro: Differential expression of LeX/CD15 by GFAP‐expressing multipotent neural stem cells and non‐neurogenic astrocytes , 2006, Glia.

[17]  Mitchel S Berger,et al.  Neural stem cells and the origin of gliomas. , 2005, The New England journal of medicine.

[18]  Austin G Smith,et al.  Niche-Independent Symmetrical Self-Renewal of a Mammalian Tissue Stem Cell , 2005, PLoS biology.

[19]  Dawen Zhao,et al.  Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. , 2005, Cancer cell.

[20]  Y. Arsenijévic,et al.  Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice. , 2005, Genes & development.

[21]  C. Kostic,et al.  Bmi1 Loss Produces an Increase in Astroglial Cells and a Decrease in Neural Stem Cell Population and Proliferation , 2005, The Journal of Neuroscience.

[22]  S. Morrison,et al.  Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. , 2005, Genes & development.

[23]  Christoph Wülfing,et al.  Polycomb Group Protein Ezh2 Controls Actin Polymerization and Cell Signaling , 2005, Cell.

[24]  R. Henkelman,et al.  Identification of human brain tumour initiating cells , 2004, Nature.

[25]  Lu‐Hai Wang Molecular signaling regulating anchorage-independent growth of cancer cells. , 2004, The Mount Sinai journal of medicine, New York.

[26]  M. Sofroniew,et al.  GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain , 2004, Nature Neuroscience.

[27]  Ugo Orfanelli,et al.  Isolation and Characterization of Tumorigenic, Stem-like Neural Precursors from Human Glioblastoma , 2004, Cancer Research.

[28]  M. Lohuizen,et al.  Stem Cells and Cancer The Polycomb Connection , 2004, Cell.

[29]  R. Weinberg,et al.  Species- and cell type-specific requirements for cellular transformation. , 2004, Cancer cell.

[30]  M. Lohuizen,et al.  Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas , 2004, Nature.

[31]  Daniel H. Geschwind,et al.  Cancerous stem cells can arise from pediatric brain tumors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[32]  S. Morrison,et al.  Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation , 2003, Nature.

[33]  S. Powell,et al.  Giant cell glioblastoma and pleomorphic xanthoastrocytoma show different immunohistochemical profiles for neuronal antigens and p53 but share reactivity for class III beta-tubulin. , 2003, Archives of pathology & laboratory medicine.

[34]  G. Sauvageau,et al.  Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells , 2003, Nature.

[35]  Irving L. Weissman,et al.  Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells , 2003, Nature.

[36]  M. Westphal,et al.  Cost of migration: invasion of malignant gliomas and implications for treatment. , 2003, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[37]  M. Sofroniew,et al.  The Predominant Neural Stem Cell Isolated from Postnatal and Adult Forebrain But Not Early Embryonic Forebrain Expresses GFAP , 2003, The Journal of Neuroscience.

[38]  S. Morrison,et al.  Prospective identification of tumorigenic breast cancer cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[39]  L. Parada,et al.  The Molecular and Genetic Basis of Neurological Tumours , 2002, Nature Reviews Cancer.

[40]  R. DePinho,et al.  Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. , 2002, Cancer cell.

[41]  G. Reifenberger,et al.  The WHO Classification of Tumors of the Nervous System , 2002, Journal of neuropathology and experimental neurology.

[42]  A. Frankfurter,et al.  Aberrant Localization of the Neuronal Class III b-Tubulin in Astrocytomas A Marker for Anaplastic Potential , 2001 .

[43]  D. Steindler,et al.  Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Daniel A. Lim,et al.  Subventricular Zone Astrocytes Are Neural Stem Cells in the Adult Mammalian Brain , 1999, Cell.

[45]  K Kornfeld,et al.  Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase. , 1999, Genes & development.

[46]  H. Varmus,et al.  A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. , 1998, Genes & development.

[47]  J. Dick,et al.  Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell , 1997, Nature Medicine.

[48]  P. Warne,et al.  Role of Phosphoinositide 3-OH Kinase in Cell Transformation and Control of the Actin Cytoskeleton by Ras , 1997, Cell.

[49]  L. Chin,et al.  Role of the INK4a Locus in Tumor Suppression and Cell Mortality , 1996, Cell.

[50]  W. Cavenee,et al.  A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[51]  M. Sofroniew,et al.  Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. , 1994, Genes & development.

[52]  M. Caligiuri,et al.  A cell initiating human acute myeloid leukaemia after transplantation into SCID mice , 1994, Nature.

[53]  C. James,et al.  Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Anton Berns,et al.  Identification of cooperating oncogenes in Eμ-myc transgenic mice by provirus tagging , 1991, Cell.

[55]  W. Alexander,et al.  Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in Eμ-myc transgenic mice , 1991, Cell.

[56]  K. McCarthy,et al.  Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue , 1980, The Journal of cell biology.

[57]  V. Freedman,et al.  Cellular tumorigenicity in nude mice: correlation with cell growth in semi-solid medium. , 1974, Cell.

[58]  John Quackenbush,et al.  Genesis: cluster analysis of microarray data , 2002, Bioinform..