Evaluating performance of link prediction in scale-free evolving networks and a Facebook community

Networks exhibit different behaviors, which govern patterns of connectivity. Predicting new links is a fundamental and challenging problem. This work examines the link prediction problem in different scale-free networks and in a Facebook community. Feature-based methods, which can be used on large-scale networks, are used to predict novel links in the graphs. Results show that predictive accuracy is largely dependent on the underlying dynamic process and connectivity pattern. A simulation engine and testing paradigm are described as resources for testing novel link prediction methods in a natural dynamic context, and guide for the selection of appropriate technique for applications.

[1]  Valentine Kabanets,et al.  Correlation Bounds and #SAT Algorithms for Small Linear-Size Circuits , 2015, COCOON.

[2]  Stephen J. Ressler Social Network Analysis as an Approach to Combat Terrorism: Past, Present, and Future Research , 2006 .

[3]  Charu C. Aggarwal,et al.  An Introduction to Social Network Data Analytics , 2011, Social Network Data Analytics.

[4]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[5]  Mathew Penrose,et al.  Random geometric graphs.Vol. 5. , 2003 .

[6]  C. Metz Basic principles of ROC analysis. , 1978, Seminars in nuclear medicine.

[7]  P. Grindrod Range-dependent random graphs and their application to modeling large small-world Proteome datasets. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Mohammad Al Hasan,et al.  A Survey of Link Prediction in Social Networks , 2011, Social Network Data Analytics.

[9]  D. Knoke,et al.  Social Network Analysis: Second Edition , 2008 .

[10]  Sabrina Helm,et al.  Viral Marketing - Establishing Customer Relationships by 'Word-of-mouse' , 2000, Electron. Mark..

[11]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[12]  Cristopher Moore,et al.  Structural Inference of Hierarchies in Networks , 2006, SNA@ICML.

[13]  Yihong Gong,et al.  A Bayesian Approach Toward Finding Communities and Their Evolutions in Dynamic Social Networks , 2009, SDM.

[14]  Sharon L. Milgram,et al.  The Small World Problem , 1967 .

[15]  Kristian Skrede Gleditsch,et al.  The Developmental Dynamics of Terrorist Organizations , 2009, PloS one.

[16]  Lise Getoor,et al.  Learning Probabilistic Relational Models , 1999, IJCAI.

[17]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[18]  David Liben-Nowell,et al.  The link-prediction problem for social networks , 2007 .

[19]  Richard E. Neapolitan,et al.  Learning Bayesian networks , 2007, KDD '07.

[20]  Desmond J. Higham,et al.  CONTEST: A Controllable Test Matrix Toolbox for MATLAB , 2009, TOMS.

[21]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[22]  Linyuan Lu,et al.  Link Prediction in Complex Networks: A Survey , 2010, ArXiv.

[23]  Lada A. Adamic,et al.  Friends and neighbors on the Web , 2003, Soc. Networks.

[24]  Mohammad Al Hasan,et al.  Link prediction using supervised learning , 2006 .

[25]  J. Hanley,et al.  The meaning and use of the area under a receiver operating characteristic (ROC) curve. , 1982, Radiology.

[26]  Desmond J. Higham,et al.  A lock-and-key model for protein-protein interactions , 2006, Bioinform..

[27]  Samuel Leinhardt,et al.  A dynamic model for social networks , 1977 .

[28]  S. Horvath,et al.  Weighted gene coexpression network analysis strategies applied to mouse weight , 2007, Mammalian Genome.

[29]  T. Snijders,et al.  Bayesian inference for dynamic social network data , 2007 .

[30]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[31]  L. Meyers,et al.  Susceptible–infected–recovered epidemics in dynamic contact networks , 2007, Proceedings of the Royal Society B: Biological Sciences.

[32]  Kathleen M. Carley Dynamic Network Analysis , 2003 .

[33]  Béla Bollobás,et al.  Random Graphs , 1985 .

[34]  Kathleen M. Carley,et al.  Dynamic Social Network Modeling and Analysis: Workshop Summary and Papers , 2004 .

[35]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[36]  M. Newman,et al.  Hierarchical structure and the prediction of missing links in networks , 2008, Nature.

[37]  Natasa Przulj,et al.  Modelling protein–protein interaction networks via a stickiness index , 2006, Journal of The Royal Society Interface.

[38]  N. Meinshausen,et al.  High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.

[39]  B. Schwikowski,et al.  A network of protein–protein interactions in yeast , 2000, Nature Biotechnology.

[40]  Christos Faloutsos,et al.  Using ghost edges for classification in sparsely labeled networks , 2008, KDD.

[41]  Krishna P. Gummadi,et al.  On the evolution of user interaction in Facebook , 2009, WOSN '09.

[42]  Herbert W. Hethcote,et al.  The Mathematics of Infectious Diseases , 2000, SIAM Rev..

[43]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[44]  Jon M. Kleinberg,et al.  The Web as a Graph: Measurements, Models, and Methods , 1999, COCOON.