Fab forms

We address the problem of allowing casual users to customize parametric models while maintaining their valid state as 3D-printable functional objects. We define Fab Form as any design representation that lends itself to interactive customization by a novice user, while remaining valid and manufacturable. We propose a method to achieve these Fab Form requirements for general parametric designs tagged with a general set of automated validity tests and a small number of parameters exposed to the casual user. Our solution separates Fab Form evaluation into a precomputation stage and a runtime stage. Parts of the geometry and design validity (such as manufacturability) are evaluated and stored in the precomputation stage by adaptively sampling the design space. At runtime the remainder of the evaluation is performed. This allows interactive navigation in the valid regions of the design space using an automatically generated Web user interface (UI). We evaluate our approach by converting several parametric models into corresponding Fab Forms.

[1]  B. McNeil,et al.  Probabilistic Sensitivity Analysis Using Monte Carlo Simulation , 1985, Medical decision making : an international journal of the Society for Medical Decision Making.

[2]  Daniel Cohen-Or,et al.  iWIRES: an analyze-and-edit approach to shape manipulation , 2009, ACM Trans. Graph..

[3]  Brian Wyvill,et al.  Extending the CSG Tree. Warping, Blending and Boolean Operations in an Implicit Surface Modeling System , 1999, Comput. Graph. Forum.

[4]  Daniel Cohen-Or,et al.  Image Appearance Exploration by Model‐Based Navigation , 2009, Comput. Graph. Forum.

[5]  Y.-T. Wu,et al.  COMPUTATIONAL METHODS FOR EFFICIENT STRUCTURAL RELIABILITY AND RELIABILITY SENSITIVITY ANALYSIS , 1993 .

[6]  Helmut Pottmann,et al.  Shape space exploration of constrained meshes , 2011, ACM Trans. Graph..

[7]  Brian Wyvill,et al.  Interactive implicit modeling with hierarchical spatial caching , 2005, International Conference on Shape Modeling and Applications 2005 (SMI' 05).

[8]  Ken Museth,et al.  VDB: High-resolution sparse volumes with dynamic topology , 2013, TOGS.

[9]  James F. O'Brien,et al.  Near-exhaustive precomputation of secondary cloth effects , 2013, ACM Trans. Graph..

[10]  Robert Joan-Arinyo,et al.  Computing parameter ranges in constructive geometric constraint solving: Implementation and correctness proof , 2012, Comput. Aided Des..

[11]  Christian Rössl,et al.  Laplacian surface editing , 2004, SGP '04.

[12]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[13]  Pat Hanrahan,et al.  Exploratory modeling with collaborative design spaces , 2009, ACM Trans. Graph..

[14]  Takeo Igarashi,et al.  Sensitive couture for interactive garment modeling and editing , 2011, ACM Trans. Graph..

[15]  Sylvain Lefebvre,et al.  Make it stand , 2013, ACM Trans. Graph..

[16]  Olga Sorkine-Hornung,et al.  Bounded biharmonic weights for real-time deformation , 2011, Commun. ACM.

[17]  日経BP社,et al.  Amazon Web Services完全ソリューションガイド , 2016 .

[18]  Tomás Lozano-Pérez,et al.  Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.

[19]  Klaudia Frankfurter Computers And Intractability A Guide To The Theory Of Np Completeness , 2016 .

[20]  Nobuyuki Umetani,et al.  Cross-sectional structural analysis for 3D printing optimization , 2013, SIGGRAPH ASIA Technical Briefs.

[21]  Leonard McMillan,et al.  A procedural approach to authoring solid models , 2002, SIGGRAPH.

[22]  Radomír Mech,et al.  Stress relief , 2012, ACM Trans. Graph..

[23]  Christoph M. Hoffmann,et al.  Towards valid parametric CAD models , 2001, Comput. Aided Des..

[24]  Takeo Igarashi,et al.  Pteromys: interactive design and optimization of free-formed free-flight model airplanes , 2014, ACM Trans. Graph..

[25]  Daniel Cohen-Or,et al.  Consistent mesh partitioning and skeletonisation using the shape diameter function , 2008, The Visual Computer.

[26]  Takeo Igarashi,et al.  Guided exploration of physically valid shapes for furniture design , 2012, ACM Trans. Graph..

[27]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[28]  Willem F. Bronsvoort,et al.  Solving topological constraints for declarative families of objects , 2006, SPM '06.

[29]  Hans-Peter Seidel,et al.  An algebraic model for parameterized shape editing , 2012, ACM Trans. Graph..

[30]  Dinesh Manocha,et al.  Efficient penetration depth approximation using active learning , 2013, ACM Trans. Graph..

[31]  Christoph M. Hoffmann,et al.  Geometric Constraint Solving in Parametric Computer-Aided Design , 2011, J. Comput. Inf. Sci. Eng..

[32]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[33]  Willem F. Bronsvoort,et al.  A constructive approach to calculate parameter ranges for systems of geometric constraints , 2005, SPM '05.

[34]  Denis Zorin,et al.  Worst-case structural analysis , 2013, ACM Trans. Graph..

[35]  Adrian Bowyer,et al.  A Survey of Global Configuration-Space Mapping Techniques for a Single Robot in a Static Environment , 2000, Int. J. Robotics Res..

[36]  Daniel Cohen-Or,et al.  Non-homogeneous resizing of complex models , 2008, SIGGRAPH Asia '08.

[37]  Ryan Schmidt,et al.  Sketch‐Based Procedural Surface Modeling and Compositing Using Surface Trees , 2008, Comput. Graph. Forum.

[38]  Paul A. Beardsley,et al.  Design galleries: a general approach to setting parameters for computer graphics and animation , 1997, SIGGRAPH.

[39]  Willem F. Bronsvoort,et al.  Semantic feature modelling , 2000, Comput. Aided Des..

[40]  M. Lepper,et al.  Rethinking the value of choice: a cultural perspective on intrinsic motivation. , 1999, Journal of personality and social psychology.

[41]  Leonidas J. Guibas,et al.  Probabilistic reasoning for assembly-based 3D modeling , 2011, ACM Trans. Graph..

[42]  Takeo Igarashi,et al.  Crowd-powered parameter analysis for visual design exploration , 2014, UIST.