Finite-temperature spin dynamics of a two-dimensional Bose-Bose atomic mixture

We examine the role of thermal fluctuations in uniform two-dimensional binary Bose mixtures of dilute ultracold atomic gases. We use a mean-field Hartree-Fock theory to derive analytical predictions for the miscible-immiscible transition. A nontrivial result of this theory is that a fully miscible phase at $T=0$ may become unstable at $T\neq0$, as a consequence of a divergent behaviour in the spin susceptibility. We test this prediction by performing numerical simulations with the Stochastic (Projected) Gross-Pitaevskii equation, which includes beyond mean-field effects. We calculate the equilibrium configurations at different temperatures and interaction strengths and we simulate spin oscillations produced by a weak external perturbation. Despite some qualitative agreement, the comparison between the two theories shows that the mean-field approximation is not able to properly describe the behavior of the two-dimensional mixture near the miscible-immiscible transition, as thermal fluctuations smoothen all sharp features both in the phase diagram and in spin dynamics, except for temperature well below the critical temperature for superfluidity.

[1]  Masahito Ueda,et al.  Spinor Bose-Einstein condensates , 2010, Quantum Atom Optics.

[2]  S. Giorgini,et al.  Thermodynamics of dilute Bose gases: Beyond mean-field theory for binary mixtures of Bose-Einstein condensates , 2020, 2008.05246.

[3]  F. Dalfovo,et al.  Kibble-Zurek dynamics in a trapped ultracold Bose gas , 2020, Physical Review Research.

[4]  A. Farolfi,et al.  Measurement of the Canonical Equation of State of a Weakly Interacting 3D Bose Gas. , 2020, Physical review letters.

[5]  F. Dalfovo,et al.  Quench dynamics of an ultracold two-dimensional Bose gas , 2019, Physical Review A.

[6]  V. Penna,et al.  Spatial Phase Separation of a Binary Mixture in a Ring Trimer , 2019, Journal of Physics: Conference Series.

[7]  T. Enss,et al.  Coupled superfluidity of binary Bose mixtures in two dimensions , 2019, Physical Review A.

[8]  S. Giorgini,et al.  Magnetic Phase Transition in a Mixture of Two Interacting Superfluid Bose Gases at Finite Temperature. , 2018, Physical review letters.

[9]  Robert P. Smith,et al.  From single-particle excitations to sound waves in a box-trapped atomic Bose-Einstein condensate , 2018, Physical Review A.

[10]  Michikazu Kobayashi,et al.  Berezinskii-Kosterlitz-Thouless Transition of Two-Component Bose Mixtures with Intercomponent Josephson Coupling. , 2019 .

[11]  F. Larcher Dynamical excitations in low-dimensional condensates: sound, vortices and quenched dynamics , 2018 .

[12]  J. Dalibard,et al.  Sound Propagation in a Uniform Superfluid Two-Dimensional Bose Gas. , 2018, Physical review letters.

[13]  F. Dalfovo,et al.  Collisionless Sound in a Uniform Two-Dimensional Bose Gas. , 2018, Physical review letters.

[14]  F. Dalfovo,et al.  Dynamical equilibration across a quenched phase transition in a trapped quantum gas , 2017, Communications Physics.

[15]  G. Lamporesi,et al.  Observation of Spin Superfluidity in a Bose Gas Mixture. , 2017, Physical review letters.

[16]  G. Lamporesi,et al.  Spin-dipole oscillation and polarizability of a binary Bose-Einstein condensate near the miscible-immiscible phase transition , 2016, 1607.04574.

[17]  L. Cugliandolo,et al.  Thermal quenches in the stochastic Gross-Pitaevskii equation: Morphology of the vortex network , 2016, 1606.03262.

[18]  J. Arlt,et al.  Phase separation and dynamics of two-component Bose-Einstein condensates , 2016, 1604.08063.

[19]  J. Kosterlitz,et al.  Kosterlitz–Thouless physics: a review of key issues , 2016, Reports on progress in physics. Physical Society.

[20]  T. Huang,et al.  Stochastic growth dynamics and composite defects in quenched immiscible binary condensates. , 2012, 1205.2162.

[21]  Sandro Stringari,et al.  Bose-Einstein condensation and superfluidity , 2016 .

[22]  N. Proukakis,et al.  Engineering dark solitary waves in ring-trap Bose–Einstein condensates , 2015, 1510.07078.

[23]  A. Recati,et al.  Spin-dipole oscillation and relaxation of coherently coupled Bose–Einstein condensates , 2015, 1503.05000.

[24]  R. Duine,et al.  Hydrodynamic modes of partially condensed Bose mixtures , 2015, 1502.03138.

[25]  D. Angom,et al.  Thermal suppression of phase separation in condensate mixtures , 2015, 1502.00473.

[26]  J. Dalibard,et al.  Emergence of coherence via transverse condensation in a uniform quasi-two-dimensional Bose gas , 2014, Nature Communications.

[27]  N. Berloff,et al.  Modeling quantum fluid dynamics at nonzero temperatures , 2014, Proceedings of the National Academy of Sciences.

[28]  Masahito Ueda,et al.  Spinor Bose gases: Symmetries, magnetism, and quantum dynamics , 2013 .

[29]  A. Bayerle,et al.  Quantum degenerate mixtures of strontium and rubidium atoms , 2013, 1305.5935.

[30]  Alexander L. Gaunt,et al.  Bose-Einstein condensation of atoms in a uniform potential. , 2012, Physical review letters.

[31]  Ashton S. Bradley,et al.  Persistent-current formation in a high-temperature Bose-Einstein condensate: An experimental test for classical-field theory , 2012, 1208.4421.

[32]  W. M. Liu,et al.  Controlling phase separation of a two-component Bose-Einstein condensate by confinement , 2012, 1204.1256.

[33]  B. Malomed,et al.  Rabi flopping induces spatial demixing dynamics. , 2011, Physical review letters.

[34]  W. M. Liu,et al.  Spontaneous crystallization of skyrmions and fractional vortices in fast-rotating and rapidly quenched spin-1 Bose-Einstein condensates , 2011, 1105.6289.

[35]  S. Cornish,et al.  Dual-species Bose-Einstein condensate of 87Rb and 133Cs. , 2011, 1102.1576.

[36]  H. Nägerl,et al.  Production of a dual-species Bose-Einstein condensate of Rb and Cs atoms , 2011, 1101.1409.

[37]  J. Anglin,et al.  Quantum kinetic theory of collisionless superfluid internal convection. , 2010, Physical Review Letters.

[38]  V. L. Berezinskit DESTRUCTION OF LONG-RANGE ORDER IN ONE-DIMENSIONAL AND TWO-DIMENSIONAL SYSTEMS POSSESSING A CONTINUOUS SYMMETRY GROUP . II . QUANTUM , 2011 .

[39]  Taro Hayashi,et al.  Controlling phase separation of binary Bose-Einstein condensates via mixed-spin-channel Feshbach resonance , 2010, 1007.2690.

[40]  Ashton S. Bradley,et al.  Decay of a quantum vortex: Test of nonequilibrium theories for warm Bose-Einstein condensates , 2009, 0912.3300.

[41]  T. Nikuni,et al.  Bose-Condensed Gases at Finite Temperatures , 2009 .

[42]  B. V. Schaeybroeck,et al.  Weakly Interacting Bose Mixtures at Finite Temperature , 2009, 0901.3048.

[43]  N. Proukakis,et al.  The stochastic Gross-Pitaevskii equation and some applications , 2008, 0812.1926.

[44]  Nick P. Proukakis,et al.  Finite-temperature models of Bose–Einstein condensation , 2008, 0810.0210.

[45]  C. W. Gardiner,et al.  Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques , 2008, 0809.1487.

[46]  H. Smith,et al.  Bose–Einstein Condensation in Dilute Gases by C. J. Pethick , 2008 .

[47]  J M Pino,et al.  Tunable miscibility in a dual-species Bose-Einstein condensate. , 2008, Physical review letters.

[48]  B. Schaeybroeck Interface tension of Bose-Einstein condensates , 2008, 0805.2512.

[49]  M. Inguscio,et al.  Double species Bose-Einstein condensate with tunable interspecies interactions. , 2008, Physical review letters.

[50]  Ashton S. Bradley,et al.  Bose-Einstein condensation from a rotating thermal cloud: Vortex nucleation and lattice formation , 2007, Physical Review A.

[51]  K. Rzążewski,et al.  Classical fields approximation for bosons at nonzero temperatures , 2007 .

[52]  Marco Camesasca,et al.  Quantifying Fluid Mixing with the Shannon Entropy , 2006 .

[53]  D. Stamper-Kurn,et al.  Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose–Einstein condensate , 2006, Nature.

[54]  J. Schmiedmayer,et al.  Quasicondensate growth on an atom chip , 2005, cond-mat/0509154.

[55]  A. Aspect,et al.  Experimental study of the thermodynamics of an interacting trapped Bose-Einstein condensed gas , 2004 .

[56]  B. Svistunov,et al.  Two-dimensional weakly interacting Bose gas in the fluctuation region , 2002, cond-mat/0206223.

[57]  M. Modugno,et al.  Two atomic species superfluid. , 2002, Physical review letters.

[58]  A. Sinatra,et al.  The truncated Wigner method for Bose-condensed gases: limits of validity and applications , 2002, cond-mat/0201217.

[59]  H. Stoof,et al.  Phase fluctuations in atomic Bose gases. , 2001, Physical review letters.

[60]  C. Pethick,et al.  Bose–Einstein Condensation in Dilute Gases: Contents , 2008 .

[61]  B. Svistunov,et al.  Critical point of a weakly interacting two-dimensional Bose gas. , 2001, Physical review letters.

[62]  S. Stringari,et al.  Moment of inertia and quadrupole response function of a trapped superfluid , 2000, cond-mat/0004325.

[63]  B. Malomed,et al.  Structure of binary Bose-Einstein condensates , 2000, cond-mat/0008255.

[64]  H. Stoof,et al.  Dynamics of Fluctuating Bose–Einstein Condensates , 2000, cond-mat/0007026.

[65]  Wei-mou Zheng,et al.  Phase separation of Bose gases at finite temperature , 2000 .

[66]  B. Svistunov,et al.  Quasicondensation in a two-dimensional interacting Bose gas , 2000 .

[67]  H. Smith,et al.  Zero-temperature phase diagram of binary boson-fermion mixtures , 1999, cond-mat/9911080.

[68]  P. Öhberg Two-component condensates: The role of temperature , 1999 .

[69]  Ananth P. Chikkatur,et al.  Spin domains in ground state spinor Bose-Einstein condensates , 1999 .

[70]  D. Stamper-Kurn,et al.  Spin domains in ground-state Bose–Einstein condensates , 1998, Nature.

[71]  P. Ao,et al.  Binary Bose-Einstein Condensate Mixtures in Weakly and Strongly Segregated Phases , 1998, cond-mat/9809195.

[72]  D. Stamper-Kurn,et al.  OPTICAL CONFINEMENT OF A BOSE-EINSTEIN CONDENSATE , 1997, cond-mat/9711273.

[73]  E. Timmermans Phase Separation of Bose-Einstein Condensates , 1997, cond-mat/9709301.

[74]  S. Stenholm,et al.  HARTREE-FOCK TREATMENT OF THE TWO-COMPONENT BOSE-EINSTEIN CONDENSATE , 1997, cond-mat/9708110.

[75]  J. Anglin Cold, dilute, trapped bosons as an open quantum system , 1996, quant-ph/9611008.

[76]  Carl E. Wieman,et al.  PRODUCTION OF TWO OVERLAPPING BOSE-EINSTEIN CONDENSATES BY SYMPATHETIC COOLING , 1997 .

[77]  Ho,et al.  Binary Mixtures of Bose Condensates of Alkali Atoms. , 1996, Physical review letters.

[78]  D. Thouless,et al.  Ordering, metastability and phase transitions in two-dimensional systems , 1973 .

[79]  D. Thouless,et al.  Long range order and metastability in two dimensional solids and superfluids. (Application of dislocation theory) , 1972 .

[80]  N. Mermin,et al.  Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .

[81]  P. C. Hohenberg,et al.  Microscopic Theory of Superfluid Helium , 1965 .