Reversible oxidative Addition an Kohlenstoff

Es wird die Reaktivitat N-heterocyclischer Carbene (NHCs) und cyclischer Alkylaminocarbene (cAACs) gegenuber Arylboronsaureestern vorgestellt. Die Reaktionen mit NHCs fuhren zur reversiblen Bildung thermisch stabiler Lewis-Saure-Base-Addukte Ar-B(OR)2⋅NHC (Add1–Add6). Die Umsetzungen von cAACMe mit den Catecholboronsaureestern 4-R-C6H4Bcat (R=Me, OMe) liefern die Addukte 4-R-C6H4Bcat⋅cAACMe (Add7, R=Me) und (Add8, R=OMe), die bei Raumtemperatur zu den cAACMe-Ringerweiterungsprodukten RER1 und RER2 reagieren. Die Boronsaureester Ar-B(OR)2 des Pinakols, Neopentylglykols und Ethylenglykols reagieren bei Raumtemperatur mit cAACMe unter reversibler oxidativer Addition der B-C-Bindung an das Carben-Kohlenstoffatom zu cAACMe(B{OR}2)(Ar) (BCA1–BCA6). NMR-spektroskopische Untersuchungen an cAACMe(Bneop)(4-Me-C6H4) (BCA4) belegen die Reversibilitat dieser oxidativen Addition am Kohlenstoffatom.

[1]  U. Radius,et al.  Ligand versus Complex: C-F and C-H Bond Activation of Polyfluoroaromatics at a Cyclic (Alkyl)(Amino)Carbene. , 2017, Chemistry.

[2]  Hajime Ito,et al.  Transition-metal-free B-B and B-interelement reactions with organic molecules. , 2017, Chemical Society reviews.

[3]  M. Tamm,et al.  Elucidating the Reactivity of Vicinal Dicarbenoids: From Lewis Adduct Formation to B-C Bond Activation. , 2016, Chemistry.

[4]  U. Radius,et al.  Adduct Formation, B-H Activation and Ring Expansion at Room Temperature from Reactions of HBcat with NHCs. , 2016, Chemistry.

[5]  Z. R. Turner,et al.  Chemically Non-Innocent Cyclic (Alkyl)(Amino)Carbenes: Ligand Rearrangement, C-H and C-F Bond Activation. , 2016, Chemistry.

[6]  U. Radius,et al.  Cyclic (Alkyl)(Amino)Carbene Complexes of Rhodium and Nickel and Their Steric and Electronic Parameters. , 2016, Chemistry.

[7]  S. Geier,et al.  Diboron(4) Compounds: From Structural Curiosity to Synthetic Workhorse. , 2016, Chemical reviews.

[8]  U. Radius,et al.  25 years of N-heterocyclic carbenes: activation of both main-group element-element bonds and NHCs themselves. , 2016, Dalton transactions.

[9]  U. Radius,et al.  Room temperature ring expansion of N-heterocyclic carbenes and B-B bond cleavage of diboron(4) compounds. , 2015, Chemistry.

[10]  Rian D. Dewhurst,et al.  sp(2)-sp(3) diboranes: astounding structural variability and mild sources of nucleophilic boron for organic synthesis. , 2015, Chemical communications.

[11]  T. Rovis,et al.  Organocatalytic Reactions Enabled by N-Heterocyclic Carbenes. , 2015, Chemical reviews.

[12]  G. Bertrand,et al.  Cyclic (alkyl)(amino)carbenes (CAACs): stable carbenes on the rise. , 2015, Accounts of chemical research.

[13]  F. Glorius,et al.  An overview of N-heterocyclic carbenes , 2014, Nature.

[14]  I. R. Shaikh Organocatalysis: Key Trends in Green Synthetic Chemistry, Challenges, Scope towards Heterogenization, and Importance from Research and Industrial Point of View , 2014 .

[15]  G. Lloyd‐Jones,et al.  Selection of boron reagents for Suzuki-Miyaura coupling. , 2014, Chemical Society reviews.

[16]  Alex Brown,et al.  Carbene-Bound Borane and Silane Adducts: A Comprehensive DFT Study on Their Stability and Propensity for Hydride-Mediated Ring Expansion , 2013 .

[17]  U. Radius,et al.  C-N-Bindungsspaltung und Ringerweiterung N-heterocyclischer Carbene durch Hydrosilane† , 2012 .

[18]  U. Radius,et al.  C-N bond cleavage and ring expansion of N-heterocyclic carbenes using hydrosilanes. , 2012, Angewandte Chemie.

[19]  C. Pubill-Ulldemolins,et al.  Nucleophilic boron strikes back , 2012 .

[20]  D. Apperley,et al.  Spectroscopic and structural characterization of the CyNHC adduct of B2pin2 in solution and in the solid state. , 2012, The Journal of organic chemistry.

[21]  C. Bo,et al.  Transition-metal-free diboration reaction by activation of diboron compounds with simple Lewis bases. , 2011, Angewandte Chemie.

[22]  A. Hoveyda,et al.  Metal-free catalytic C-Si bond formation in an aqueous medium. Enantioselective NHC-catalyzed silyl conjugate additions to cyclic and acyclic α,β-unsaturated carbonyls. , 2011, Journal of the American Chemical Society.

[23]  G. Bertrand,et al.  Stable singlet carbenes as mimics for transition metal centers. , 2011, Chemical science.

[24]  Amadeu Bonet,et al.  Metal-free catalytic boration at the beta-position of alpha,beta-unsaturated compounds: a challenging asymmetric induction. , 2010, Angewandte Chemie.

[25]  P. Power Main-group elements as transition metals , 2010, Nature.

[26]  A. Hoveyda,et al.  Efficient C-B bond formation promoted by N-heterocyclic carbenes: synthesis of tertiary and quaternary B-substituted carbons through metal-free catalytic boron conjugate additions to cyclic and acyclic alpha,beta-unsaturated carbonyls. , 2009, Journal of the American Chemical Society.

[27]  D. Enders,et al.  Organocatalysis by N-heterocyclic carbenes. , 2007, Chemical reviews.

[28]  R. Hoffmann Brücken zwischen Anorganischer und Organischer Chemie (Nobel‐Vortrag) , 2006 .

[29]  Roald Hoffmann,et al.  Building Bridges Between Inorganic and Organic Chemistry (Nobel Lecture) , 1982 .