High-resolution spatial light modulation for holographic video

The goal of the proposed research is to further the fabrication of a high-bandwidth two-axis scanning device. The device is intended for use in a holographic video geometry built specifically to take advantage of the new modulator's high-bandwidth and vertical-deflection capabilities, but it could also be used in many developing 3D display systems which currently require high-bandwidth light modulation. The modulator will have a spatial frequency bandwidth one order-of-magnitude greater than current light modulation technologies and be two orders of magnitude less expensive. Thesis Supervisor: Dr. V. Michael Bove Title: Principal Research Scientist High-Resolution Spatial Light Modulation for Holographic Video by Daniel E. Smalley The following person served as a reader for this thesis:

[1]  Joel S. Kollin,et al.  Design and information considerations for holographic television , 1988 .

[2]  Shigetaro Ogura,et al.  Efficient, damage resistant LiNbO3 acousto‐optic waveguide deflector , 1985 .

[3]  Gerald Fütterer,et al.  Full-color interactive holographic projection system for large 3D scene reconstruction , 2008, SPIE OPTO.

[4]  Gregg E. Favalora,et al.  Occlusion-capable multiview volumetric three-dimensional display. , 2007, Applied optics.

[5]  Takanori Okoshi Three-Dimensional Imaging Techniques , 1976 .

[6]  Colin Campbell,et al.  Surface Acoustic Wave Devices for Mobile and Wireless Communications , 1998 .

[7]  Andrew P. Wood,et al.  3D electronic holography display system using a 100-megapixel spatial light modulator , 2004, SPIE Optical Systems Design.

[8]  T C Poon,et al.  Real-time two-dimensional holographic imaging by using an electron-beam-addressed spatial light modulator. , 1993, Optics letters.

[9]  Daniel E. Smalley Integrated Optics for Holographic Video , 2006 .

[10]  Mary Lou Jepsen,et al.  Holographic video : design and implementation of a display system , 1989 .

[11]  E.G.S. Paige,et al.  Surface-Wave Devices for Signal Processing , 1986 .

[12]  V. V. Proklov,et al.  Multichannel waveguide devices using collinear acoustooptic interaction , 1992, IEEE 1992 Ultrasonics Symposium Proceedings.

[13]  S. Benton,et al.  Holographic Imaging , 2008 .

[14]  C.S. Tsai,et al.  Collinear guided wave to leaky wave acoustooptic interactions in proton-exchanged LiNbO/sub 3/ waveguides , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[15]  M. Solal,et al.  A P-matrix based model for SAW grating waveguides taking into account modes conversion at the reflection , 2004, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[16]  Kunihiro Sato,et al.  Full-color holographic display with wide visual field and viewing zone , 2005, SPIE Optics East.

[17]  Daniel E. Smalley,et al.  Holographic video display based on guided-wave acousto-optic devices , 2007, SPIE OPTO.

[18]  M. Huebschman,et al.  Dynamic holographic 3-D image projection. , 2003, Optics express.

[19]  Inspec,et al.  Properties of lithium niobate , 1989 .

[20]  P. K. Tien,et al.  Theory of Prism–Film Coupler and Thin-Film Light Guides , 1970 .

[21]  H. M. Gerard,et al.  Analysis of Interdigital Surface Wave Transducers by Use of an Equivalent Circuit Model , 1969 .

[22]  Chen S. Tsai,et al.  Guided-wave acousto-optics : interactions, devices, and applications , 1990 .

[23]  P. Blanche,et al.  An updatable holographic three-dimensional display , 2008, Nature.

[24]  Eun-Soo Kim,et al.  Color LCoS-based full-color electro-holographic 3D display system , 2005, SPIE Defense + Commercial Sensing.

[25]  J. Veselka,et al.  Proton exchange for high‐index waveguides in LiNbO3 , 1982 .

[26]  Darrel G. Hopper Cockpit and future displays for defense and security : 30 March-1 April, 2005, Orlando, Florida, USA , 2005 .