Microglia Function in Central Nervous System Development and Plasticity.

The nervous system comprises a remarkably diverse and complex network of different cell types, which must communicate with one another with speed, reliability, and precision. Thus, the developmental patterning and maintenance of these cell populations and their connections with one another pose a rather formidable task. Emerging data implicate microglia, the resident myeloid-derived cells of the central nervous system (CNS), in the spatial patterning and synaptic wiring throughout the healthy, developing, and adult CNS. Importantly, new tools to specifically manipulate microglia function have revealed that these cellular functions translate, on a systems level, to effects on overall behavior. In this review, we give a historical perspective of work to identify microglia function in the healthy CNS and highlight exciting new work in the field that has identified roles for these cells in CNS development, maintenance, and plasticity.

[1]  T. Maniatis,et al.  An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex , 2014, The Journal of Neuroscience.

[2]  C. Mallard Effect of inflammation on central nervous system development and vulnerability , 2014 .

[3]  S. Beggs,et al.  Sublime Microglia: Expanding Roles for the Guardians of the CNS , 2014, Cell.

[4]  Emily K. Lehrman,et al.  An engulfment assay: a protocol to assess interactions between CNS phagocytes and neurons. , 2014, Journal of visualized experiments : JoVE.

[5]  Brian L. West,et al.  Colony-Stimulating Factor 1 Receptor Signaling Is Necessary for Microglia Viability, Unmasking a Microglia Progenitor Cell in the Adult Brain , 2014, Neuron.

[6]  Guy C. Brown,et al.  Microglial phagocytosis of live neurons , 2014, Nature Reviews Neuroscience.

[7]  Francesco Sforazzini,et al.  Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior , 2014, Nature Neuroscience.

[8]  S. Gygi,et al.  Identification of a Unique TGF-β Dependent Molecular and Functional Signature in Microglia , 2013, Nature Neuroscience.

[9]  S. Shaham,et al.  Noncanonical cell death in the nematode Caenorhabditis elegans. , 2014, Methods in enzymology.

[10]  J. Yates,et al.  Microglia Promote Learning-Dependent Synapse Formation through Brain-Derived Neurotrophic Factor , 2013, Cell.

[11]  B. Stevens,et al.  Phagocytic glial cells: sculpting synaptic circuits in the developing nervous system , 2013, Current Opinion in Neurobiology.

[12]  Stephen J. Smith,et al.  Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways , 2013, Nature.

[13]  T. Luedde,et al.  A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation , 2013, Nature Neuroscience.

[14]  R. Myers,et al.  A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. , 2013, Cell reports.

[15]  N. Toni,et al.  Adult hippocampal neurogenesis inversely correlates with microglia in conditions of voluntary running and aging , 2013, Front. Neurosci..

[16]  N. Toni,et al.  Doxycycline increases neurogenesis and reduces microglia in the adult hippocampus , 2013, Front. Neurosci..

[17]  M. Ishii,et al.  Layer V cortical neurons require microglial support for survival during postnatal development , 2013, Nature Neuroscience.

[18]  J. Nabekura,et al.  Microglia: actively surveying and shaping neuronal circuit structure and function , 2013, Trends in Neurosciences.

[19]  V. Martínez‐Cerdeño,et al.  Microglia Regulate the Number of Neural Precursor Cells in the Developing Cerebral Cortex , 2013, The Journal of Neuroscience.

[20]  J. Feldon,et al.  Stress in Puberty Unmasks Latent Neuropathological Consequences of Prenatal Immune Activation in Mice , 2013, Science.

[21]  James C. Cronk,et al.  The role of microglia in brain maintenance: implications for Rett syndrome. , 2013, Trends in immunology.

[22]  M. McCarthy,et al.  Microglia Are Essential to Masculinization of Brain and Behavior , 2013, The Journal of Neuroscience.

[23]  A. Mildner,et al.  Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. , 2013, Immunity.

[24]  F. Kirchhoff,et al.  Microglia: New Roles for the Synaptic Stripper , 2013, Neuron.

[25]  Emily K. Lehrman,et al.  The “quad‐partite” synapse: Microglia‐synapse interactions in the developing and mature CNS , 2013, Glia.

[26]  M. Prinz,et al.  Microglia as modulators of cognition and neuropsychiatric disorders , 2013, Glia.

[27]  H. Neumann,et al.  Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis , 2012, Front. Cell. Neurosci..

[28]  P. Boksa,et al.  Prenatal and postnatal animal models of immune activation: Relevance to a range of neurodevelopmental disorders , 2012, Developmental neurobiology.

[29]  S. Bilbo,et al.  The immune system and developmental programming of brain and behavior , 2012, Frontiers in Neuroendocrinology.

[30]  S. Bilbo,et al.  Sex, glia, and development: Interactions in health and disease , 2012, Hormones and Behavior.

[31]  G. Ming,et al.  Modification of hippocampal circuitry by adult neurogenesis , 2012, Developmental neurobiology.

[32]  B. Barres,et al.  The complement system: an unexpected role in synaptic pruning during development and disease. , 2012, Annual review of neuroscience.

[33]  Ben A. Barres,et al.  Microglia Sculpt Postnatal Neural Circuits in an Activity and Complement-Dependent Manner , 2012, Neuron.

[34]  S. Bilbo,et al.  Sex differences in microglial colonization of the developing rat brain , 2012, Journal of neurochemistry.

[35]  James C. Cronk,et al.  Wild type microglia arrest pathology in a mouse model of Rett syndrome , 2012, Nature.

[36]  H. Neumann,et al.  Sialic Acid on the Neuronal Glycocalyx Prevents Complement C1 Binding and Complement Receptor-3-Mediated Removal by Microglia , 2012, The Journal of Neuroscience.

[37]  O. Pascual,et al.  Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission , 2011, Proceedings of the National Academy of Sciences.

[38]  P. Bickford,et al.  CX3CR1 Deficiency Leads to Impairment of Hippocampal Cognitive Function and Synaptic Plasticity , 2011, The Journal of Neuroscience.

[39]  A. Nimmerjahn,et al.  The Role of Microglia in the Healthy Brain , 2011, The Journal of Neuroscience.

[40]  S. Bilbo,et al.  Microglia and Memory: Modulation by Early-Life Infection , 2011, The Journal of Neuroscience.

[41]  M. Giustetto,et al.  Synaptic Pruning by Microglia Is Necessary for Normal Brain Development , 2011, Science.

[42]  R. Ransohoff,et al.  How Many Cell Types Does It Take to Wire a Brain? , 2011, Science.

[43]  Michael R. Elliott,et al.  Phagocytic activity of neuronal progenitors regulates adult neurogenesis , 2011, Nature Cell Biology.

[44]  E. Kurant Keeping the CNS clear: Glial phagocytic functions in Drosophila , 2011, Glia.

[45]  C. Garner,et al.  Presynaptic function in health and disease , 2011, Trends in Neurosciences.

[46]  J. Littleton,et al.  Synapse development in health and disease. , 2011, Current opinion in genetics & development.

[47]  H. Kettenmann,et al.  Physiology of microglia. , 2011, Physiological reviews.

[48]  S. Nutt,et al.  Endogenous microglia regulate development of embryonic cortical precursor cells , 2011, Journal of neuroscience research.

[49]  M. Tremblay The role of microglia at synapses in the healthy CNS: novel insights from recent imaging studies. , 2011, Neuron glia biology.

[50]  R. Ransohoff,et al.  The myeloid cells of the central nervous system parenchyma , 2010, Nature.

[51]  F. Ginhoux,et al.  Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages , 2010, Science.

[52]  M. Graeber Changing Face of Microglia , 2010, Science.

[53]  Ania K. Majewska,et al.  Microglial Interactions with Synapses Are Modulated by Visual Experience , 2010, PLoS biology.

[54]  G. Enikolopov,et al.  Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. , 2010, Cell stem cell.

[55]  Mriganka Sur,et al.  Structural Dynamics of Synapses in Vivo Correlate with Functional Changes during Experience-Dependent Plasticity in Visual Cortex , 2010, The Journal of Neuroscience.

[56]  E. Courchesne,et al.  Microglial Activation and Increased Microglial Density Observed in the Dorsolateral Prefrontal Cortex in Autism , 2010, Biological Psychiatry.

[57]  Petr Tvrdik,et al.  Hematopoietic Origin of Pathological Grooming in Hoxb8 Mutant Mice , 2010, Cell.

[58]  B. Stevens,et al.  Synapse elimination during development and disease: immune molecules take centre stage. , 2010, Biochemical Society transactions.

[59]  廣瀬雄一,et al.  Neuroscience , 2019, Workplace Attachments.

[60]  W. Slikker,et al.  The Developing Nervous System , 2010 .

[61]  P. Patterson Immune involvement in schizophrenia and autism: Etiology, pathology and animal models , 2009, Behavioural Brain Research.

[62]  I. Spigelman,et al.  Microglia-associated granule cell death in the normal adult dentate gyrus , 2009, Brain Structure and Function.

[63]  B. Fredholm,et al.  LTP impairment by fractalkine/CX3CL1 in mouse hippocampus is mediated through the activity of adenosine receptor type 3 (A3R) , 2009, Journal of Neuroimmunology.

[64]  J. Feldon,et al.  In-vivo rodent models for the experimental investigation of prenatal immune activation effects in neurodevelopmental brain disorders , 2009, Neuroscience & Biobehavioral Reviews.

[65]  S. Bilbo,et al.  Early-Life Programming of Later-Life Brain and Behavior: A Critical Role for the Immune System , 2009, Front. Behav. Neurosci..

[66]  Takahiro A. Kato,et al.  Cytokines and schizophrenia: Microglia hypothesis of schizophrenia , 2009, Psychiatry and clinical neurosciences.

[67]  M. Kano,et al.  Synapse elimination in the central nervous system , 2009, Current Opinion in Neurobiology.

[68]  J. Pollard Trophic macrophages in development and disease , 2009, Nature Reviews Immunology.

[69]  V. Perry,et al.  Microglial physiology: unique stimuli, specialized responses. , 2009, Annual review of immunology.

[70]  H. Reinebrant,et al.  Minocycline: A neuroprotective agent for hypoxic‐ischemic brain injury in the neonate? , 2009, Journal of neuroscience research.

[71]  H. Neumann,et al.  Microglial clearance function in health and disease , 2009, Neuroscience.

[72]  A. Triller,et al.  Developmental Neuronal Death in Hippocampus Requires the Microglial CD11b Integrin and DAP12 Immunoreceptor , 2008, The Journal of Neuroscience.

[73]  E. Réal,et al.  Prenatal Activation of Microglia Induces Delayed Impairment of Glutamatergic Synaptic Function , 2008, PloS one.

[74]  M. Feller,et al.  Mechanisms underlying development of visual maps and receptive fields. , 2008, Annual review of neuroscience.

[75]  C. Nüsslein-Volhard,et al.  Live Imaging of Neuronal Degradation by Microglia Reveals a Role for v0-ATPase a1 in Phagosomal Fusion In Vivo , 2008, Cell.

[76]  John D. Lambris,et al.  The Classical Complement Cascade Mediates CNS Synapse Elimination , 2007, Cell.

[77]  Bryan M. Hooks,et al.  Critical Periods in the Visual System: Changing Views for a Model of Experience-Dependent Plasticity , 2007, Neuron.

[78]  M. van Lookeren Campagne,et al.  Macrophage complement receptors and pathogen clearance , 2007, Cellular microbiology.

[79]  J. W. Rudy,et al.  Differential effects of neonatal handling on early life infection-induced alterations in cognition in adulthood , 2007, Brain, Behavior, and Immunity.

[80]  A. Huberman Mechanisms of eye-specific visual circuit development , 2007, Current Opinion in Neurobiology.

[81]  Mary A. Logan,et al.  The scoop on the fly brain: glial engulfment functions in Drosophila , 2010 .

[82]  A. Bessis,et al.  Microglial control of neuronal death and synaptic properties , 2007, Glia.

[83]  Colm Cunningham,et al.  Systemic infections and inflammation affect chronic neurodegeneration , 2007, Nature Reviews Immunology.

[84]  C. Rickert,et al.  Programmed cell death in the embryonic central nervous system of Drosophila melanogaster , 2007, Development.

[85]  A. Mócsai,et al.  Integrin signaling in neutrophils and macrophages uses adaptors containing immunoreceptor tyrosine-based activation motifs , 2006, Nature Immunology.

[86]  Bryan M. Hooks,et al.  Distinct Roles for Spontaneous and Visual Activity in Remodeling of the Retinogeniculate Synapse , 2006, Neuron.

[87]  J. W. Rudy,et al.  Peripheral infection and aging interact to impair hippocampal memory consolidation , 2006, Neurobiology of Aging.

[88]  J. W. Rudy,et al.  A behavioural characterization of neonatal infection-facilitated memory impairment in adult rats , 2006, Behavioural Brain Research.

[89]  C. Gravel,et al.  BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain , 2005, Nature.

[90]  J. Cobb,et al.  DAP12 (KARAP) amplifies inflammation and increases mortality from endotoxemia and septic peritonitis , 2005, The Journal of experimental medicine.

[91]  L. Lanier,et al.  Enhanced Toll-like receptor responses in the absence of signaling adaptor DAP12 , 2005, Nature Immunology.

[92]  W. Gan,et al.  ATP mediates rapid microglial response to local brain injury in vivo , 2005, Nature Neuroscience.

[93]  F. Helmchen,et al.  Resting Microglial Cells Are Highly Dynamic Surveillants of Brain Parenchyma in Vivo , 2005, Science.

[94]  T. Woo,et al.  Targeting synapses and myelin in the prevention of schizophrenia , 2005, Schizophrenia Research.

[95]  J. W. Rudy,et al.  Neonatal infection induces memory impairments following an immune challenge in adulthood. , 2005, Behavioral neuroscience.

[96]  A. Zimmerman,et al.  Neuroglial activation and neuroinflammation in the brain of patients with autism , 2005, Annals of neurology.

[97]  C. Levelt,et al.  Structural plasticity in the developing visual system. , 2005, Progress in brain research.

[98]  E. Gundelfinger,et al.  Impaired Synaptic Function in the Microglial KARAP/DAP12-Deficient Mouse , 2004, The Journal of Neuroscience.

[99]  P. Gasque Complement: a unique innate immune sensor for danger signals. , 2004, Molecular immunology.

[100]  Ruth A. Carper,et al.  Autism and Abnormal Development of Brain Connectivity , 2004, The Journal of Neuroscience.

[101]  Jean Gautier,et al.  Early neural cell death: dying to become neurons. , 2004, Developmental biology.

[102]  Deanna L. Taylor,et al.  Microglia release activators of neuronal proliferation mediated by activation of mitogen‐activated protein kinase, phosphatidylinositol‐3‐kinase/Akt and delta–Notch signalling cascades , 2004, Journal of neurochemistry.

[103]  Stephen J. Smith,et al.  Neural activity and the dynamics of central nervous system development , 2004, Nature Neuroscience.

[104]  F. Sedel,et al.  Macrophage-Derived Tumor Necrosis Factor α, an Early Developmental Signal for Motoneuron Death , 2004, The Journal of Neuroscience.

[105]  N. Rooijen,et al.  Microglia Promote the Death of Developing Purkinje Cells , 2004, Neuron.

[106]  Mriganka Sur,et al.  Motility of dendritic spines in visual cortex in vivo: Changes during the critical period and effects of visual deprivation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[107]  S. Koizumi,et al.  P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury , 2003, Nature.

[108]  L. Maffei,et al.  Effects of dark rearing on phosphorylation of neurotrophin Trk receptors , 2002, The European journal of neuroscience.

[109]  Tony Wyss-Coray,et al.  Inflammation in Neurodegenerative Disease—A Double-Edged Sword , 2002, Neuron.

[110]  Zheng Zhou,et al.  CED-1 Is a Transmembrane Receptor that Mediates Cell Corpse Engulfment in C. elegans , 2001, Cell.

[111]  M. Bear,et al.  Visual Experience and Deprivation Bidirectionally Modify the Composition and Function of NMDA Receptors in Visual Cortex , 2001, Neuron.

[112]  W. Regehr,et al.  Developmental Remodeling of the Retinogeniculate Synapse , 2000, Neuron.

[113]  Pascal Meier,et al.  Apoptosis in development , 2000, Nature.

[114]  J. Ortaldo,et al.  Combined natural killer cell and dendritic cell functional deficiency in KARAP/DAP12 loss-of-function mutant mice. , 2000, Immunity.

[115]  K. White,et al.  Regulation and execution of apoptosis during Drosophila development , 2000, Developmental dynamics : an official publication of the American Association of Anatomists.

[116]  J. Lichtman,et al.  Synapse Elimination and Indelible Memory , 2000, Neuron.

[117]  S. Arnold,et al.  Neurodevelopmental abnormalities in schizophrenia: Insights from neuropathology , 1999, Development and Psychopathology.

[118]  S. Korsmeyer,et al.  Cell Death in Development , 1999, Cell.

[119]  J. Sanes,et al.  Development of the vertebrate neuromuscular junction. , 1999, Annual review of neuroscience.

[120]  D. Gautheret,et al.  Gene Structure, Expression Pattern, and Biological Activity of Mouse Killer Cell Activating Receptor-associated Protein (KARAP)/DAP-12* , 1998, The Journal of Biological Chemistry.

[121]  J. Zimmer,et al.  Development of microglia in the postnatal rat hippocampus , 1998, Hippocampus.

[122]  D. Maślińska,et al.  Morphological forms and localization of microglial cells in the developing human cerebellum. , 1998, Folia neuropathologica.

[123]  E. Kosno-Kruszewska,et al.  The comparison of microglia maturation in different structures of the human nervous system. , 1998, Folia neuropathologica.

[124]  Y. Barde,et al.  Microglia-Derived Nerve Growth Factor Causes Cell Death in the Developing Retina , 1998, Neuron.

[125]  L. Mulder,et al.  Do macrophages kill through apoptosis? , 1996, Immunology today.

[126]  C. Shatz,et al.  Synaptic Activity and the Construction of Cortical Circuits , 1996, Science.

[127]  M. Mallat,et al.  Brain macrophages stimulate neurite growth and regeneration by secreting thrombospondin , 1994, Journal of neuroscience research.

[128]  J. Bishop,et al.  Macrophages are required for cell death and tissue remodeling in the developing mouse eye , 1993, Cell.

[129]  H. Saito,et al.  Microglia-derived plasminogen enhances neurite outgrowth from explant cultures of rat brain , 1993, International Journal of Developmental Neuroscience.

[130]  H. Steller,et al.  Programmed cell death during Drosophila embryogenesis. , 1993, Development.

[131]  T. J. Cunningham,et al.  Differential immunochemical markers reveal the normal distribution of brain macrophages and microglia in the developing rat brain , 1991, The Journal of comparative neurology.

[132]  R. Oppenheim Cell death during development of the nervous system. , 1991, Annual review of neuroscience.

[133]  I. Ferrer,et al.  Naturally occurring cell death in the cerebral cortex of the rat and removal of dead cells by transitory phagocytes , 1990, Neuroscience.

[134]  J. Lambris,et al.  The biology and pathophysiology of complement receptors. , 1986, Anticancer research.

[135]  V. Perry,et al.  Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain , 1985, Neuroscience.

[136]  G. Mower,et al.  Very brief visual experience eliminates plasticity in the cat visual cortex. , 1983, Science.

[137]  D. Purves,et al.  Elimination of synapses in the developing nervous system. , 1980, Science.

[138]  J. Sulston,et al.  Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. , 1977, Developmental biology.

[139]  M L BURSTALL,et al.  The tetracyclines. , 1960, Manitoba medical review.