Fq-Linear Cyclic Codes over Fq: DFT Characterization

Codes over Fqm that form vector spaces over Fq are called Fq-linear codes over Fqm. Among these we consider only cyclic codes and call them Fq-linear cyclic codes (FqLC codes) over Fqm. This class of codes includes as special cases (i) group cyclic codes over elementary abelian groups (q = p, a prime), (ii) subspace subcodes of Reed-Solomon codes and (iii) linear cyclic codes over Fq (m=1). Transform domain characterization of FqLC codes is obtained using Discrete Fourier Transform (DFT) over an extension field of Fqm. We showho wone can use this transform domain structures to estimate a minimum distance bound for the corresponding quasicyclic code by BCH-like argument.

[1]  G. David Forney,et al.  Geometrically uniform codes , 1991, IEEE Trans. Inf. Theory.

[2]  Rudolf Lide,et al.  Finite fields , 1983 .

[3]  Mohammad Umar Siddiqi,et al.  Transform domain characterization of cyclic codes overZm , 1994, Applicable Algebra in Engineering, Communication and Computing.

[4]  H. Niederreiter,et al.  Finite Fields: Encyclopedia of Mathematics and Its Applications. , 1997 .

[5]  J.L. Massey,et al.  Theory and practice of error control codes , 1986, Proceedings of the IEEE.

[6]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[7]  Mohammad Umar Siddiqi,et al.  Transform domain characterization of Abelian codes , 1992, IEEE Trans. Inf. Theory.

[8]  Robert Michael Tanner,et al.  A transform theory for a class of group-invariant codes , 1988, IEEE Trans. Inf. Theory.

[9]  Magnus Isaksson,et al.  Block-coded M-PSK modulation over GF(M) , 1993, IEEE Trans. Inf. Theory.

[10]  Robert J. McEliece,et al.  Subspace subcodes of Reed-Solomon codes , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[11]  Patrick Fitzpatrick,et al.  Algebraic structure of quasicyclic codes , 2001, Discret. Appl. Math..

[12]  Christoph G. Günther A Finite Field Fourier Transform for Vectors of Arbitrary Length , 1994 .

[13]  Mohammad Umar Siddiqi,et al.  A generalized DFT for Abelian codes over Zm , 1994, IEEE Trans. Inf. Theory.

[14]  B. Sundar Rajan,et al.  Algebraic characterization of MDS group codes over cyclic groups , 1995, IEEE Trans. Inf. Theory.

[15]  Jakov Snyders,et al.  A cyclic [6, 3, 4] group code and the hexacode over GF(4) , 1996, IEEE Trans. Inf. Theory.

[16]  Mohammad Umar Siddiqi,et al.  Transform decoding of BCH codes over Zm , 1993 .

[17]  B. R. McDonald Finite Rings With Identity , 1974 .

[18]  G. David Forney,et al.  On the Hamming distance properties of group codes , 1992, IEEE Trans. Inf. Theory.