Consistency of the Parkes Pulsar Timing Array Signal with a Nanohertz Gravitational-wave Background
暂无分享,去创建一个
E. Thrane | B. Goncharov | J. Harms | N. Bhat | R. Manchester | G. Hobbs | C. Russell | Xing-Jiang Zhu | M. Kerr | D. Reardon | A. Zic | Ryan M. Shannon | Xingjiang Zhu | Xingjiang Zhu
[1] P. Meyers,et al. Stochastic Gravitational-Wave Backgrounds: Current Detection Efforts and Future Prospects , 2022, Galaxies.
[2] J. Greene,et al. A Quasar-based Supermassive Black Hole Binary Population Model: Implications for the Gravitational Wave Background , 2021, The Astrophysical Journal.
[3] J. Gair,et al. Noise analysis in the European Pulsar Timing Array data release 2 and its implications on the gravitational-wave background search , 2021, 2111.05186.
[4] J. Gair,et al. Common-red-signal analysis with 24-yr high-precision timing of the European Pulsar Timing Array: Inferences in the stochastic gravitational-wave background search , 2021, 2110.13184.
[5] H. Middleton,et al. On the Evidence for a Common-spectrum Process in the Search for the Nanohertz Gravitational-wave Background with the Parkes Pulsar Timing Array , 2021, 2107.12112.
[6] H. Middleton,et al. The Parkes pulsar timing array second data release: timing analysis , 2021, Monthly Notices of the Royal Astronomical Society.
[7] A. Melatos,et al. Rapid parameter estimation of a two-component neutron star model with spin wandering using a Kalman filter , 2021, Monthly Notices of the Royal Astronomical Society.
[8] D. Stinebring,et al. Astrophysics Milestones for Pulsar Timing Array Gravitational-wave Detection , 2020, The Astrophysical Journal Letters.
[9] OUP accepted manuscript , 2021, Monthly Notices of the Royal Astronomical Society.
[10] OUP accepted manuscript , 2021, Monthly Notices of the Royal Astronomical Society.
[11] E. Thrane,et al. Identifying and mitigating noise sources in precision pulsar timing data sets , 2020, 2010.06109.
[12] Stephen R. Taylor,et al. The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background , 2020, The Astrophysical Journal Letters.
[13] J. Dempsey,et al. The Parkes Pulsar Timing Array project: second data release , 2020, Publications of the Astronomical Society of Australia.
[14] E. Thrane,et al. Is there a spectral turnover in the spin noise of millisecond pulsars? , 2019, 1910.05961.
[15] Rutger van Haasteren,et al. PTMCMCSampler: Parallel tempering MCMC sampler package written in Python , 2019 .
[16] Stephen Taylor,et al. ENTERPRISE: Enhanced Numerical Toolbox Enabling a Robust PulsaR Inference SuitE , 2019 .
[17] P. Lasky,et al. Bilby: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy , 2018, The Astrophysical Journal Supplement Series.
[18] Colm Talbot,et al. An introduction to Bayesian inference in gravitational-wave astronomy: Parameter estimation, model selection, and hierarchical models , 2018, Publications of the Astronomical Society of Australia.
[19] Daniel Foreman-Mackey,et al. Data Analysis Recipes: Using Markov Chain Monte Carlo , 2017, 1710.06068.
[20] R. Karuppusamy,et al. High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array , 2016, 1602.08511.
[21] D. Stinebring,et al. From spin noise to systematics: Stochastic processes in the first International Pulsar Timing Array data release , 2016, 1602.05570.
[22] D. Stinebring,et al. The International Pulsar Timing Array: First Data Release , 2016, 1602.03640.
[23] J. Gair,et al. The noise properties of 42 millisecond pulsars from the European Pulsar Timing Array and their impact on gravitational wave searches , 2015, 1510.09194.
[24] A. Lasenby,et al. polychord: next-generation nested sampling , 2015, 1506.00171.
[25] A. Melatos,et al. Pulsar timing noise from superfluid turbulence , 2013, 1310.3108.
[26] F. Feroz,et al. TempoNest: A Bayesian approach to pulsar timing analysis , 2013, 1310.2120.
[27] Chongqing,et al. The Parkes Pulsar Timing Array Project , 2006, Publications of the Astronomical Society of Australia.
[28] D. Stinebring,et al. Gravitational Wave Astronomy Using Pulsars: Massive Black Hole Mergers & the Early Universe , 2009, 0902.2968.
[29] John K Kruschke,et al. Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.
[30] Y. Levin,et al. On measuring the gravitational-wave background using Pulsar Timing Arrays , 2008, 0809.0791.
[31] R. Manchester,et al. tempo2, a new pulsar timing package ¿ II. The timing model and precision estimates , 2006, astro-ph/0607664.
[32] R. Hellings,et al. Upper limits on the isotropic gravitational radiation background from pulsar timing analysis , 1983 .
[33] J. Dickey. The Weighted Likelihood Ratio, Linear Hypotheses on Normal Location Parameters , 1971 .