The structural basis of large ribosomal subunit function.

The ribosome crystal structures published in the past two years have revolutionized our understanding of ribonucleoprotein structure, and more specifically, the structural basis of the peptide bonding forming activity of the ribosome. This review concentrates on the crystallographic developments that made it possible to solve these structures. It also discusses the information obtained from these structures about the three-dimensional architecture of the large ribosomal subunit, the mechanism by which it facilitates peptide bond formation, and the way antibiotics inhibit large subunit function. The work reviewed, taken as a whole, proves beyond doubt that the ribosome is an RNA enzyme, as had long been surmised on the basis of less conclusive evidence.

[1]  W. Jencks,et al.  Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[2]  R. Traut,et al.  THE PUROMYCIN REACTION AND ITS RELATION TO PROTEIN SYNTHESIS. , 1964, Journal of molecular biology.

[3]  K. Nierhaus,et al.  Incorporation of six additional proteins to complete the assembly map of the 50 S subunit from Escherichia coli ribosomes. , 1987, The Journal of biological chemistry.

[4]  V. Ramakrishnan,et al.  Ribosome Structure and the Mechanism of Translation , 2002, Cell.

[5]  I. Shatsky,et al.  Topography of RNA in the ribosome: location of the 3′‐end of 5 S RNA on the central protuberance of the 50 S subunit , 1980, FEBS letters.

[6]  S. Harrison,et al.  Structure of tomato bushy stunt virus. II. Comparison of results obtained by electron microscopy and x-ray diffraction. , 1975, Journal of molecular biology.

[7]  M. Yusupov,et al.  Crystallization of 70 S ribosomes and 30 S ribosomal subunits from Thermus thermophilus , 1987 .

[8]  A Yonath,et al.  Functional universality and evolutionary diversity: insights from the structure of the ribosome. , 1998, Structure.

[9]  R. Gutell,et al.  Secondary structure model for 23S ribosomal RNA. , 1981, Nucleic acids research.

[10]  R. Garrett,et al.  Assembly of proteins and 5 S rRNA to transcripts of the major structural domains of 23 S rRNA. , 1998, Journal of molecular biology.

[11]  A new crystalline form of 30 S ribosomal subunits from Thermus thermophilus , 1988 .

[12]  V. Ramakrishnan,et al.  Recognition of Cognate Transfer RNA by the 30S Ribosomal Subunit , 2001, Science.

[13]  Joachim Frank,et al.  A 9 Å Resolution X-Ray Crystallographic Map of the Large Ribosomal Subunit , 1998, Cell.

[14]  N. Seeman,et al.  Three-Dimensional Tertiary Structure of Yeast Phenylalanine Transfer RNA , 1974, Science.

[15]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[16]  C. Yanofsky,et al.  Instruction of Translating Ribosome by Nascent Peptide , 2002, Science.

[17]  Nan Yu,et al.  The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs , 2002, BMC Bioinformatics.

[18]  Frank Schluenzen,et al.  High Resolution Structure of the Large Ribosomal Subunit from a Mesophilic Eubacterium , 2001, Cell.

[19]  A Yonath,et al.  Characterization of crystals of small ribosomal subunits. , 1988, Journal of molecular biology.

[20]  T. Steitz,et al.  A pre-translocational intermediate in protein synthesis observed in crystals of enzymatically active 50S subunits , 2002, Nature Structural Biology.

[21]  J. Ofengand,et al.  Chemical evidence for domain assembly of the Escherichia coli 30S ribosome , 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[22]  T. Steitz,et al.  Progress toward an understanding of the structure and enzymatic mechanism of the large ribosomal subunit. , 2001, Cold Spring Harbor symposia on quantitative biology.

[23]  H. Noller,et al.  Independent in vitro assembly of a ribonucleoprotein particle containing the 3' domain of 16S rRNA. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Thomas A. Steitz,et al.  RNA tertiary interactions in the large ribosomal subunit: The A-minor motif , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[25]  R. Garrett,et al.  A Domain of 23S Ribosomal RNA in Search of a Function , 1986 .

[26]  Poul Nissen,et al.  The structures of four macrolide antibiotics bound to the large ribosomal subunit. , 2002, Molecular cell.

[27]  Leszek Rychlewski,et al.  Errors in the D. radiodurans large ribosomal subunit structure detected by protein fold‐recognition and structure validation tools , 2002, FEBS letters.

[28]  S. Dorner,et al.  A conformational change in the ribosomal peptidyl transferase center upon active/inactive transition , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[29]  S. Strobel,et al.  A single adenosine with a neutral pKa in the ribosomal peptidyl transferase center. , 2000, Science.

[30]  R. Stroud,et al.  The signal recognition particle. , 2001, Annual review of biochemistry.

[31]  P. Moore,et al.  Structural motifs in RNA. , 1999, Annual review of biochemistry.

[32]  G. Kramer,et al.  Structure, Function, and Genetics of Ribosomes , 1986, Springer Series in Molecular Biology.

[33]  T. Steitz,et al.  The kink‐turn: a new RNA secondary structure motif , 2001, The EMBO journal.

[34]  M van Heel,et al.  The 70S Escherichia coli ribosome at 23 A resolution: fitting the ribosomal RNA. , 1995, Structure.

[35]  V. Ramakrishnan,et al.  Ribosomal protein structures: insights into the architecture, machinery and evolution of the ribosome. , 1998, Trends in biochemical sciences.

[36]  H. Noller,et al.  Analysis of mutations at residues A2451 and G2447 of 23S rRNA in the peptidyltransferase active site of the 50S ribosomal subunit , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[37]  J. Frank,et al.  A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome , 1995, Nature.

[38]  Independent in vitro assembly of all three major morphological parts of the 30S ribosomal subunit of Thermus thermophilus. , 1999, European journal of biochemistry.

[39]  C. Kundrot,et al.  Crystal Structure of a Group I Ribozyme Domain: Principles of RNA Packing , 1996, Science.

[40]  R. Brimacombe,et al.  Visualization of elongation factor Tu on the Escherichia coli ribosome , 1997, Nature.

[41]  V. Ramakrishnan,et al.  Structure of a bacterial 30S ribosomal subunit at 5.5 Å resolution , 1999, Nature.

[42]  H. Bartels,et al.  Characterization and preliminary attempts for derivatization of crystals of large ribosomal subunits from Haloarcula marismortui diffracting to 3 A resolution. , 1991, Journal of molecular biology.

[43]  J. Frank,et al.  Direct Visualization of A-, P-, and E-Site Transfer RNAs in the Escherichia coli Ribosome , 1996, Science.

[44]  J. Lake,et al.  Nascent polypeptide chains exit the ribosome in the same relative position in both eucaryotes and procaryotes , 1983, The Journal of cell biology.

[45]  A. Yonath,et al.  Single crystals of large ribosomal particles from Halobacterium marismortui diffract to 6 A. , 1987, Journal of molecular biology.

[46]  F. Schluenzen,et al.  Identification of Selected Ribosomal Components in Crystallographic Maps of Prokaryotic Ribosomal Subunits at Medium Resolution , 2000 .

[47]  A. Liljas Comparative biochemistry and biophysics of ribosomal proteins. , 1991, International review of cytology.

[48]  A. Tocilj,et al.  Crystallographic studies on the ribosome, a large macromolecular assembly exhibiting severe nonisomorphism, extreme beam sensitivity and no internal symmetry. , 1998, Acta crystallographica. Section A, Foundations of crystallography.

[49]  Protein structure: experimental and theoretical aspects , 2002, FEBS letters.

[50]  Thomas A Steitz,et al.  Structural insights into peptide bond formation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[51]  M. Rossmann,et al.  Crystallographic studies on lactate dehydrogenase at –75°C , 1970 .

[52]  T. Earnest,et al.  Crystal Structure of the Ribosome at 5.5 Å Resolution , 2001, Science.

[53]  Wolfgang Wintermeyer,et al.  Important contribution to catalysis of peptide bond formation by a single ionizing group within the ribosome. , 2002, Molecular cell.

[54]  R. Traut,et al.  Ribosome-catalysed peptidyl transfer: the polyphenylalanine system. , 1968, Journal of molecular biology.

[55]  R. Brimacombe,et al.  Arrangement of tRNAs in Pre- and Posttranslocational Ribosomes Revealed by Electron Cryomicroscopy , 1997, Cell.

[56]  pKa of adenine 2451 in the ribosomal peptidyl transferase center remains elusive. , 2001, RNA.

[57]  A Yonath,et al.  A tunnel in the large ribosomal subunit revealed by three-dimensional image reconstruction. , 1987, Science.

[58]  V. Ramakrishnan,et al.  Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: structure of the proteins and their interactions with 16 S RNA. , 2002, Journal of molecular biology.

[59]  F. Dohme,et al.  Total reconstitution of functionally active 50S ribosomal subunits from Escherichia coli. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Thomas A. Steitz,et al.  The involvement of RNA in ribosome function , 2002, Nature.

[61]  F. Schluenzen,et al.  High-resolution structures of ribosomal subunits: initiation, inhibition, and conformational variability. , 2001, Cold Spring Harbor symposia on quantitative biology.

[62]  C. Vonrhein,et al.  Structure of the 30S ribosomal subunit , 2000, Nature.

[63]  M. Pool,et al.  Distinct Modes of Signal Recognition Particle Interaction with the Ribosome , 2002, Science.

[64]  R. Monro Catalysis of peptide bond formation by 50 S ribosomal subunits from Escherichia coli. , 1967, Journal of molecular biology.

[65]  A. Yonath,et al.  Cryocrystallography of ribosomal particles. , 1989, Acta crystallographica. Section B, Structural science.

[66]  J Frank,et al.  Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Joachim Frank,et al.  A ratchet-like inter-subunit reorganization of the ribosome during translocation , 2000, Nature.

[68]  M. Heel,et al.  Elucidating the medium-resolution structure of ribosomal particles: an interplay between electron cryo-microscopy and X-ray crystallograhy. , 1999, Structure.

[69]  G. Fox,et al.  Frequent occurrence of the T-loop RNA folding motif in ribosomal RNAs. , 2002, RNA.

[70]  P. Traub,et al.  Structure and function of E. coli ribosomes. V. Reconstitution of functionally active 30S ribosomal particles from RNA and proteins. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[71]  F. Schluenzen,et al.  Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria , 2001, Nature.

[72]  P. Moore The ribosome at atomic resolution. , 2001, Biochemistry.

[73]  S. Strobel,et al.  pH-dependent conformational flexibility within the ribosomal peptidyl transferase center. , 2001, RNA.

[74]  J A Lake,et al.  Ribosome structure determined by electron microscopy of Escherichia coli small subunits, large subunits and monomeric ribosomes. , 1976, Journal of molecular biology.

[75]  J. Lake,et al.  Nascent polypeptide chains emerge from the exit domain of the large ribosomal subunit: immune mapping of the nascent chain. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[76]  T. Richmond,et al.  Crystal structure of the nucleosome core particle at 2.8 Å resolution , 1997, Nature.

[77]  Poul Nissen,et al.  Placement of protein and RNA structures into a 5 Å-resolution map of the 50S ribosomal subunit , 1999, Nature.

[78]  V. Ramakrishnan,et al.  Atomic structures at last: the ribosome in 2000. , 2001, Current opinion in structural biology.

[79]  J. Abrahams,et al.  Methods used in the structure determination of bovine mitochondrial F1 ATPase. , 1996, Acta crystallographica. Section D, Biological crystallography.

[80]  A. Mankin,et al.  Ribosomal peptidyl transferase can withstand mutations at the putative catalytic nucleotide , 2001, Nature.

[81]  G. Stöffler,et al.  Immunoelectron microscopy of ribosomes. , 1984, Annual review of biophysics and bioengineering.

[82]  A. Yonath The search and its outcome: high-resolution structures of ribosomal particles from mesophilic, thermophilic, and halophilic bacteria at various functional states. , 2002, Annual review of biophysics and biomolecular structure.

[83]  Szilvia Szép,et al.  The crystal structure of a 26-nucleotide RNA containing a hook-turn. , 2003, RNA.

[84]  K. Weeks,et al.  Catalysis of amide synthesis by RNA phosphodiester and hydroxyl groups , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[85]  E. Westhof,et al.  RNA folding: beyond Watson-Crick pairs. , 2000, Structure.

[86]  M. Ehrenberg,et al.  Regulatory Nascent Peptides in the Ribosomal Tunnel , 2002, Cell.

[87]  F. Schluenzen,et al.  Structure of Functionally Activated Small Ribosomal Subunit at 3.3 Å Resolution , 2000, Cell.

[88]  R. Milligan,et al.  Location of exit channel for nascent protein in 80S ribosome , 1986, Nature.

[89]  T. Steitz,et al.  The structural basis of ribosome activity in peptide bond synthesis. , 2000, Science.

[90]  N. Volkmann,et al.  A milestone in ribosomal crystallography: the construction of preliminary electron density maps at intermediate resolution. , 1995, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[91]  J. McCutcheon,et al.  Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: purification, crystallization and structure determination. , 2001, Journal of molecular biology.

[92]  Thomas A Steitz,et al.  After the ribosome structures: how does peptidyl transferase work? , 2003, RNA.

[93]  R. Garrett,et al.  Domain VI of Escherichia coli 23 S ribosomal RNA. Structure, assembly and function. , 1988, Journal of molecular biology.

[94]  G. Kumar,et al.  Donor site of ribosomal peptidyltransferase: investigation of substrate specificity using 2'(3')-O-(N-acylaminoacyl)dinucleoside phosphates as models of the 3' terminus of N-acylaminoacyl transfer ribonucleic acid. , 1981, Biochemistry.

[95]  T. Earnest,et al.  X-ray crystal structures of 70S ribosome functional complexes. , 1999, Science.

[96]  R. Garrett,et al.  Structure and accessibility of domain I of Escherichia coli 23 S RNA in free RNA, in the L24-RNA complex and in 50 S subunits. Implications for ribosomal assembly. , 1987, Journal of molecular biology.

[97]  E. Westhof,et al.  Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. , 1990, Journal of molecular biology.

[98]  J Frank,et al.  The polypeptide tunnel system in the ribosome and its gating in erythromycin resistance mutants of L4 and L22. , 2001, Molecular cell.

[99]  A Yonath,et al.  Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3 , 2001, The EMBO journal.

[100]  B. Clark,et al.  Structure of yeast phenylalanine tRNA at 3 Å resolution , 1974, Nature.

[101]  H. Hope Cryocrystallography of biological macromolecules: a generally applicable method. , 1988, Acta crystallographica. Section B, Structural science.