Charge-carrier transport and recombination in heteroepitaxial CdTe

We analyze charge-carrier dynamics using time-resolved spectroscopy and varying epitaxial CdTe thickness in undoped heteroepitaxial CdTe/ZnTe/Si. By employing one-photon and nonlinear two-photon excitation, we assess surface, interface, and bulk recombination. Two-photon excitation with a focused laser beam enables characterization of recombination velocity at the buried epilayer/substrate interface, 17.5 μm from the sample surface. Measurements with a focused two-photon excitation beam also indicate a fast diffusion component, from which we estimate an electron mobility of 650 cm2 (Vs)−1 and diffusion coefficient D of 17 cm2 s−1. We find limiting recombination at the epitaxial film surface (surface recombination velocity Ssurface = (2.8 ± 0.3) × 105 cm s−1) and at the heteroepitaxial interface (interface recombination velocity Sinterface = (4.8 ± 0.5) × 105 cm s−1). The results demonstrate that reducing surface and interface recombination velocity is critical for photovoltaic solar cells and electronic d...

[1]  Darius Kuciauskas,et al.  The role of drift, diffusion, and recombination in time‐resolved photoluminescence of CdTe solar cells determined through numerical simulation , 2014 .

[2]  D. Kuciauskas,et al.  Cd-rich and Te-rich low-temperature photoluminescence in cadmium telluride , 2014 .

[3]  Suhuai Wei,et al.  Research strategies toward improving thin-film CdTe photovoltaic devices beyond 20% conversion efficiency , 2013 .

[4]  Yong-Hang Zhang,et al.  Growth, steady-state, and time-resolved photoluminescence study of CdTe/MgCdTe double heterostructures on InSb substrates using molecular beam epitaxy , 2013 .

[5]  D. Levi,et al.  Minority Carrier Lifetime Analysis in the Bulk of Thin-Film Absorbers Using Subbandgap (Two-Photon) Excitation , 2013, IEEE Journal of Photovoltaics.

[6]  S. Arscott,et al.  Surface recombination in doped semiconductors: Effect of light excitation power and of surface passivation , 2013 .

[7]  D. Kuciauskas,et al.  Dependence of the minority-carrier lifetime on the stoichiometry of CdTe using time-resolved photoluminescence and first-principles calculations. , 2013, Physical review letters.

[8]  Edward S. Barnard,et al.  Probing carrier lifetimes in photovoltaic materials using subsurface two-photon microscopy , 2013, Scientific Reports.

[9]  F. Trojánek,et al.  Large prolongation of free-exciton photoluminescence decay in diamond by two-photon excitation. , 2012, Optics letters.

[10]  Hadis Morkoç,et al.  Carrier dynamics in bulk GaN , 2012 .

[11]  P. Schley,et al.  Comprehensive photoluminescence study of chlorine activated polycrystalline cadmium telluride layers , 2010 .

[12]  T. Mishina,et al.  Exciton Luminescence Dynamics in ZnO Crystal Observed under One- and Two-Photon Excitation , 2010 .

[13]  J. Garland,et al.  Single-crystal II-VI on Si single-junction and tandem solar cells , 2010 .

[14]  Siavash Yazdanfar,et al.  Ultrafast optical pulse delivery with fibers for nonlinear microscopy , 2008, Microscopy research and technique.

[15]  Nibir K. Dhar,et al.  Dislocation reduction in CdTe/Si by molecular beam epitaxy through in-situ annealing , 2008 .

[16]  S. Juršėnas,et al.  Carrier recombination and diffusion in GaN revealed by transient luminescence under one-photon and two-photon excitations , 2006 .

[17]  R. Ahrenkiel,et al.  Interface recombination velocity measurement by a contactless microwave technique , 2004 .

[18]  T. Kang,et al.  Surface passivation by sulfur treatment of undoped p-CdTe(100) , 2000 .

[19]  K. Jarašiūnas,et al.  Carrier transport and recombination in MOVPE-grown CdTe/ZnTe/GaAs and ZnTe/GaAs heterostructures , 2000 .

[20]  N. Everall Modeling and Measuring the Effect of Refraction on the Depth Resolution of Confocal Raman Microscopy , 2000 .

[21]  Y. Rosenwaks,et al.  Unusually low surface recombination and long bulk lifetime in n-CdTe single crystals , 1998 .

[22]  B. A. Foreman,et al.  One- and two-photon-excited time-resolved photoluminescence investigations of bulk and surface recombination dynamics in ZnSe , 1998 .

[23]  Sivalingam Sivananthan,et al.  High quality large-area CdTe(211)B on Si(211) grown by molecular beam epitaxy , 1997 .

[24]  K. Matsuura,et al.  Defect-induced emission band in CdTe , 1994 .

[25]  A. Forchel,et al.  Time-resolved investigations of sidewall recombination in dry-etched GaAs wires , 1990 .

[26]  T. Taguchi,et al.  A new 1.47 eV defect-luminescence band in MOCVD-grown CdTe on (100) GaAs , 1990 .

[27]  Vaidya Nathan,et al.  Review of multiphoton absorption in crystalline solids , 1985 .

[28]  P. J. Dean,et al.  Novel type of optical transition observed in MBE grown CdTe , 1984 .

[29]  D. Aspnes,et al.  Nondestructive analysis of Hg1−xCdxTe (x=0.00, 0.20, 0.29, and 1.00) by spectroscopic ellipsometry. I. Chemical oxidation and etching , 1984 .

[30]  H. Gerritsen,et al.  Study of surface recombination in GaAs and InP by picosecond optical techniques , 1980 .

[31]  K. Jarašiūnas,et al.  Studies of carrier dynamics in epitaxial heterostructures by nonlinear optical and microwave techniques , 2003 .

[32]  Richard K. Ahrenkiel,et al.  Chapter 2 Minority-Carrier Lifetime in III–V Semiconductors , 1993 .

[33]  A. Forchel,et al.  Time resolved spectroscopy on etched GaAs/GaAlAs-quantum-microstructures , 1989 .