Ubiquitin: structures, functions, mechanisms.

Ubiquitin is the founding member of a family of structurally conserved proteins that regulate a host of processes in eukaryotic cells. Ubiquitin and its relatives carry out their functions through covalent attachment to other cellular proteins, thereby changing the stability, localization, or activity of the target protein. This article reviews the basic biochemistry of these protein conjugation reactions, focusing on ubiquitin itself and emphasizing recent insights into mechanism and specificity.

[1]  Michael J. Ellison,et al.  An NMR-based Model of the Ubiquitin-bound Human Ubiquitin Conjugation Complex Mms2·Ubc13 , 2003, The Journal of Biological Chemistry.

[2]  R. Conaway,et al.  The Rbx1 subunit of SCF and VHL E3 ubiquitin ligase activates Rub1 modification of cullins Cdc53 and Cul2. , 1999, Genes & development.

[3]  T. Hashikawa,et al.  CHIP is associated with Parkin, a gene responsible for familial Parkinson's disease, and enhances its ubiquitin ligase activity. , 2002, Molecular cell.

[4]  K. Borden RING domains: master builders of molecular scaffolds? , 2000, Journal of molecular biology.

[5]  K Nasmyth,et al.  Cdc53/cullin and the essential Hrt1 RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34. , 1999, Genes & development.

[6]  M. Hochstrasser There's the rub: a novel ubiquitin-like modification linked to cell cycle regulation. , 1998, Genes & development.

[7]  Z. Ronai,et al.  Recruitment of a ROC1–CUL1 Ubiquitin Ligase by Skp1 and HOS to Catalyze the Ubiquitination of IκBα , 1999 .

[8]  E. Koonin,et al.  The U box is a modified RING finger — a common domain in ubiquitination , 2000, Current Biology.

[9]  T. Maniatis,et al.  Signal induced degradation of IkBa requires site-specific ubiquitina-tion , 1995 .

[10]  J. Peters,et al.  Ubiquitin and the Biology of the Cell , 1998, Springer US.

[11]  J Deisenhofer,et al.  APC2 Cullin protein and APC11 RING protein comprise the minimal ubiquitin ligase module of the anaphase-promoting complex. , 2001, Molecular biology of the cell.

[12]  W. Xiao,et al.  Noncovalent Interaction between Ubiquitin and the Human DNA Repair Protein Mms2 Is Required for Ubc13-mediated Polyubiquitination* , 2001, The Journal of Biological Chemistry.

[13]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[14]  A. Weissman,et al.  RING Finger Proteins Mediators of Ubiquitin Ligase Activity , 2000, Cell.

[15]  M. Pagano,et al.  Proteasome-Mediated Degradation of p21 via N-Terminal Ubiquitinylation , 2003, Cell.

[16]  W. Kaelin,et al.  Inhibition of HIF2α Is Sufficient to Suppress pVHL-Defective Tumor Growth , 2003, PLoS biology.

[17]  S. Jentsch,et al.  Ubiquitin and its kin: how close are the family ties? , 2000, Trends in cell biology.

[18]  D. Cyr,et al.  The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation , 2000, Nature Cell Biology.

[19]  B. Schulman,et al.  Insights into the ubiquitin transfer cascade from the structure of the E1 for NEDD8. , 2003 .

[20]  P. Ratcliffe,et al.  Independent function of two destruction domains in hypoxia‐inducible factor‐α chains activated by prolyl hydroxylation , 2001, The EMBO journal.

[21]  S. Fang,et al.  RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[22]  H. Schindelin,et al.  Crystal structure of molybdopterin synthase and its evolutionary relationship to ubiquitin activation , 2001, Nature Structural Biology.

[23]  Y. Ohsumi,et al.  Ubiquitin and proteasomes: Molecular dissection of autophagy: two ubiquitin-like systems , 2001, Nature Reviews Molecular Cell Biology.

[24]  M. Scheffner,et al.  A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[25]  D. Cyr,et al.  Protein quality control: U-box-containing E3 ubiquitin ligases join the fold. , 2002, Trends in biochemical sciences.

[26]  A. Ciechanover,et al.  Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. , 1983, The Journal of biological chemistry.

[27]  Raymond J. Deshaies,et al.  Multisite Phosphorylation and the Countdown to S Phase , 2001, Cell.

[28]  Alexander Varshavsky,et al.  The ubiquitin system. , 1998, Annual review of biochemistry.

[29]  Christopher J. Schofield,et al.  Structural basis for the recognition of hydroxyproline in HIF-1α by pVHL , 2002, Nature.

[30]  Zoran Radić,et al.  Structural insights into ligand interactions at the acetylcholinesterase peripheral anionic site , 2003, The EMBO journal.

[31]  K. Gould,et al.  Structural insights into the U-box, a domain associated with multi-ubiquitination , 2003, Nature Structural Biology.

[32]  H. Dyson,et al.  Structure of the PHD zinc finger from human Williams-Beuren syndrome transcription factor. , 2000, Journal of molecular biology.

[33]  H. Senn,et al.  Characterization of the binding interface between ubiquitin and class I human ubiquitin-conjugating enzyme 2b by multidimensional heteronuclear NMR spectroscopy in solution. , 1999, Journal of molecular biology.

[34]  E. Borden,et al.  High-throughput Immunoblotting , 2003, The Journal of Biological Chemistry.

[35]  S. Jentsch,et al.  Multiple ubiquitin-conjugating enzymes participate in the in vivo degradation of the yeast MATα2 repressor , 1993, Cell.

[36]  J. Wells,et al.  Dissecting the catalytic triad of a serine protease , 1988, Nature.

[37]  E. Koonin,et al.  Scores of RINGS but No PHDs in Ubiquitin Signaling , 2003, Cell cycle.

[38]  C. Pickart,et al.  Noncanonical MMS2-Encoded Ubiquitin-Conjugating Enzyme Functions in Assembly of Novel Polyubiquitin Chains for DNA Repair , 1999, Cell.

[39]  D. Fushman,et al.  Structural properties of polyubiquitin chains in solution. , 2002, Journal of molecular biology.

[40]  S. Elledge,et al.  Structure of the Cul1–Rbx1–Skp1–F boxSkp2 SCF ubiquitin ligase complex , 2002, Nature.

[41]  Min Wang,et al.  The Small Ubiquitin-like Modifier-1 (SUMO-1) Consensus Sequence Mediates Ubc9 Binding and Is Essential for SUMO-1 Modification* , 2001, The Journal of Biological Chemistry.

[42]  R. Deshaies,et al.  Context of multiubiquitin chain attachment influences the rate of Sic1 degradation. , 2003, Molecular cell.

[43]  F. Melchior,et al.  STRUCTURE DETERMINATION OF THE SMALL UBIQUITIN-RELATED MODIFIER SUMO-1, NMR, 10 STRUCTURES , 1998 .

[44]  Robert L Sutherland,et al.  Regulation of the ubiquitin‐conjugating enzyme hHR6A by CDK‐mediated phosphorylation , 2002, The EMBO journal.

[45]  G. Sprague,,et al.  Urmylation: a ubiquitin-like pathway that functions during invasive growth and budding in yeast. , 2003, Molecular biology of the cell.

[46]  R. Boelens,et al.  Identification of a ubiquitin–protein ligase subunit within the CCR4–NOT transcription repressor complex , 2002, The EMBO journal.

[47]  Erica S. Johnson,et al.  The SUMO Isopeptidase Ulp2 Prevents Accumulation of SUMO Chains in Yeast* , 2003, Journal of Biological Chemistry.

[48]  Gerhard Wagner,et al.  Structural studies of the interaction between ubiquitin family proteins and proteasome subunit S5a. , 2002, Biochemistry.

[49]  T. Ohta,et al.  Binding and recognition in the assembly of an active BRCA1/BARD1 ubiquitin-ligase complex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Ping Wang,et al.  Structure of a c-Cbl–UbcH7 Complex RING Domain Function in Ubiquitin-Protein Ligases , 2000, Cell.

[51]  U. Müller,et al.  Interaction of the RING Finger-related U-box Motif of a Nuclear Dot Protein with Ubiquitin-conjugating Enzymes* , 2001, The Journal of Biological Chemistry.

[52]  A. Haas,et al.  Site-directed mutagenesis of ubiquitin. Differential roles for arginine in the interaction with ubiquitin-activating enzyme. , 1994, Biochemistry.

[53]  E. J. Song,et al.  Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. , 2002, Cell.

[54]  M. Scheffner,et al.  E6-AP directs the HPV E6-dependent inactivation of p53 and is representative of a family of structurally and functionally related proteins. , 1994, Cold Spring Harbor symposia on quantitative biology.

[55]  A. Dejean,et al.  Nuclear and unclear functions of SUMO , 2003, Nature Reviews Molecular Cell Biology.

[56]  William Kim,et al.  The von Hippel-Lindau tumor suppressor protein: new insights into oxygen sensing and cancer. , 2003, Current opinion in genetics & development.

[57]  Matthias Peter,et al.  Cullin‐based ubiquitin ligases: Cul3–BTB complexes join the family , 2004, The EMBO journal.

[58]  H. Kawasaki,et al.  E3 ubiquitin ligase that recognizes sugar chains , 2002, Nature.

[59]  C. Pickart,et al.  Mechanisms underlying ubiquitination. , 2001, Annual review of biochemistry.

[60]  C. Pickart,et al.  Molecular Insights into Polyubiquitin Chain Assembly Crystal Structure of the Mms2/Ubc13 Heterodimer , 2001, Cell.

[61]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[62]  Takeshi Noda,et al.  A Protein Conjugation System in Yeast with Homology to Biosynthetic Enzyme Reaction of Prokaryotes* , 2000, The Journal of Biological Chemistry.

[63]  Y. Xiong,et al.  ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. , 1999, Molecular cell.

[64]  S. Jentsch,et al.  A Novel Ubiquitination Factor, E4, Is Involved in Multiubiquitin Chain Assembly , 1999, Cell.

[65]  S. Ganesan,et al.  Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. , 2001, Molecular cell.

[66]  T. Tsao,et al.  Snt309p, a Component of the Prp19p-Associated Complex That Interacts with Prp19p and Associates with the Spliceosome Simultaneously with or Immediately after Dissociation of U4 in the Same Manner as Prp19p , 1998, Molecular and Cellular Biology.

[67]  Zhijian J. Chen,et al.  Activation of the IκB Kinase Complex by TRAF6 Requires a Dimeric Ubiquitin-Conjugating Enzyme Complex and a Unique Polyubiquitin Chain , 2000, Cell.

[68]  A. Buchberger,et al.  From UBA to UBX: new words in the ubiquitin vocabulary. , 2002, Trends in cell biology.

[69]  D. Ganem,et al.  Functional Organization of MIR2, a Novel Viral Regulator of Selective Endocytosis* , 2002, The Journal of Biological Chemistry.

[70]  M. Groettrup,et al.  The Ubiquitin-like Protein FAT10 Forms Covalent Conjugates and Induces Apoptosis* , 2001, The Journal of Biological Chemistry.

[71]  H. Suzuki,et al.  NEDD8 recruits E2‐ubiquitin to SCF E3 ligase , 2001, The EMBO journal.

[72]  M. Ivan,et al.  HIFα Targeted for VHL-Mediated Destruction by Proline Hydroxylation: Implications for O2 Sensing , 2001, Science.

[73]  S. White,et al.  HIF-1α binding to VHL is regulated by stimulus-sensitive proline hydroxylation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Michael I. Wilson,et al.  Targeting of HIF-α to the von Hippel-Lindau Ubiquitylation Complex by O2-Regulated Prolyl Hydroxylation , 2001, Science.

[75]  P. Howley,et al.  Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. , 1999, Science.

[76]  B. Schulman,et al.  Insights into the ubiquitin transfer cascade from the structure of the activating enzyme for NEDD8 , 2003, Nature.

[77]  T. Ohta,et al.  The RING Heterodimer BRCA1-BARD1 Is a Ubiquitin Ligase Inactivated by a Breast Cancer-derived Mutation* , 2001, The Journal of Biological Chemistry.

[78]  E A Merritt,et al.  Raster3D: photorealistic molecular graphics. , 1997, Methods in enzymology.

[79]  D. Ganem,et al.  PHD domains and E3 ubiquitin ligases: viruses make the connection. , 2003, Trends in cell biology.

[80]  Keiji Tanaka,et al.  A novel protein‐conjugating system for Ufm1, a ubiquitin‐fold modifier , 2004, The EMBO journal.

[81]  K. Borden,et al.  Solution structure of the PHD domain from the KAP‐1 corepressor: structural determinants for PHD, RING and LIM zinc‐binding domains , 2001, The EMBO journal.

[82]  L. Nicholson,et al.  Solution structure of ThiS and implications for the evolutionary roots of ubiquitin , 2001, Nature Structural Biology.

[83]  C. Bugg,et al.  Structure of ubiquitin refined at 1.8 A resolution. , 1987, Journal of molecular biology.

[84]  Yili Yang,et al.  Regulating the p53 system through ubiquitination , 2004, Oncogene.

[85]  S. Jentsch,et al.  Conjugation of the ubiquitin-like protein NEDD8 to cullin-2 is linked to von Hippel-Lindau tumor suppressor function. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[86]  Joseph P Noel,et al.  Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase. , 2003, Molecular cell.

[87]  D. Cyr,et al.  CHIP Is a U-box-dependent E3 Ubiquitin Ligase , 2001, The Journal of Biological Chemistry.

[88]  Tony Pawson,et al.  Mathematical Modeling Suggests Cooperative Interactions between a Disordered Polyvalent Ligand and a Single Receptor Site , 2003, Current Biology.

[89]  D. Ecker,et al.  A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. , 1989, Science.

[90]  T. Maniatis,et al.  Signal-induced degradation of I kappa B alpha requires site-specific ubiquitination. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[91]  A. Levine,et al.  Structure of the MDM2 Oncoprotein Bound to the p53 Tumor Suppressor Transactivation Domain , 1996, Science.

[92]  Stephen J. Elledge,et al.  Insights into SCF ubiquitin ligases from the structure of the Skp1–Skp2 complex , 2000, Nature.

[93]  A. Varshavsky,et al.  The E2–E3 interaction in the N‐end rule pathway: the RING‐H2 finger of E3 is required for the synthesis of multiubiquitin chain , 1999, The EMBO journal.

[94]  N. Rawlings,et al.  [32] Families of cysteine peptidases , 1994, Methods in Enzymology.

[95]  David W. Miller,et al.  The structure of the APPBP1-UBA3-NEDD8-ATP complex reveals the basis for selective ubiquitin-like protein activation by an E1. , 2003, Molecular cell.

[96]  Christopher D. Lima,et al.  Structural Basis for E2-Mediated SUMO Conjugation Revealed by a Complex between Ubiquitin-Conjugating Enzyme Ubc9 and RanGAP1 , 2002, Cell.

[97]  C. Slaughter,et al.  Identification of a Multifunctional Binding Site on Ubc9p Required for Smt3p Conjugation* , 2002, The Journal of Biological Chemistry.

[98]  T. Hunter,et al.  The PHD domain of MEKK1 acts as an E3 ubiquitin ligase and mediates ubiquitination and degradation of ERK1/2. , 2002, Molecular cell.

[99]  H. Schindelin,et al.  Mechanism of ubiquitin activation revealed by the structure of a bacterial MoeB–MoaD complex , 2001, Nature.

[100]  Linda Hicke,et al.  Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. , 2003, Annual review of cell and developmental biology.

[101]  Boris Pfander,et al.  RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO , 2002, Nature.

[102]  D. Ganem,et al.  Jcb: Article , 2022 .

[103]  D. Fass,et al.  Structure of GATE-16, Membrane Transport Modulator and Mammalian Ortholog of Autophagocytosis Factor Aut7p* , 2000, The Journal of Biological Chemistry.

[104]  R. Deshaies SCF and Cullin/Ring H2-based ubiquitin ligases. , 1999, Annual review of cell and developmental biology.

[105]  M. Tyers,et al.  Structural Basis for Phosphodependent Substrate Selection and Orientation by the SCFCdc4 Ubiquitin Ligase , 2003, Cell.

[106]  John Hardy,et al.  CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation , 2004 .

[107]  B. Schulman,et al.  Ubiquitin-like protein activation , 2004, Oncogene.

[108]  A. Caudy,et al.  Regulation of Transcriptional Activation Domain Function by Ubiquitin , 2001, Science.

[109]  M. Hochstrasser,et al.  Substrate Targeting in the Ubiquitin System , 1999, Cell.

[110]  M. Ivan,et al.  Structure of an HIF-1α-pVHL Complex: Hydroxyproline Recognition in Signaling , 2002, Science.

[111]  L. Vassilev,et al.  In Vivo Activation of the p53 Pathway by Small-Molecule Antagonists of MDM2 , 2004, Science.

[112]  Muyang Li,et al.  Crystal Structure of a UBP-Family Deubiquitinating Enzyme in Isolation and in Complex with Ubiquitin Aldehyde , 2002, Cell.

[113]  M. Hochstrasser,et al.  A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matalpha2 repressor degradation. , 2001, Genes & development.

[114]  Keiji Tanaka,et al.  CHIP is a chaperone‐dependent E3 ligase that ubiquitylates unfolded protein , 2001, EMBO reports.

[115]  Jan-Michael Peters,et al.  The anaphase-promoting complex: proteolysis in mitosis and beyond. , 2002, Molecular cell.

[116]  J. Gergen,et al.  DNA-binding by Ig-fold proteins , 2001, Nature Structural Biology.

[117]  Dong-er Zhang,et al.  ISG15: the immunological kin of ubiquitin. , 2004, Seminars in cell & developmental biology.

[118]  Richard S. Rogers,et al.  A conserved catalytic residue in the ubiquitin‐conjugating enzyme family , 2003, The EMBO journal.

[119]  Tony Pawson,et al.  Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication , 2001, Nature.

[120]  G. Dittmar,et al.  Role of a Ubiquitin-Like Modification in Polarized Morphogenesis , 2002, Science.

[121]  S. Carr,et al.  Phosphorylation of Sic1p by G1 Cdk required for its degradation and entry into S phase. , 1997, Science.

[122]  C. Ptak,et al.  Structure of a conjugating enzyme-ubiquitin thiolester intermediate reveals a novel role for the ubiquitin tail. , 2001, Structure.

[123]  M. Hochstrasser,et al.  Evolution and function of ubiquitin-like protein-conjugation systems , 2000, Nature Cell Biology.

[124]  R. Conaway,et al.  Emerging Roles of Ubiquitin in Transcription Regulation , 2002, Science.

[125]  C. Hill,et al.  Crystal Structure of the Human Ubiquitin-like Protein NEDD8 and Interactions with Ubiquitin Pathway Enzymes* , 1998, The Journal of Biological Chemistry.

[126]  M. Kitagawa,et al.  Cell cycle-dependent expression of mammalian E2-C regulated by the anaphase-promoting complex/cyclosome. , 2000, Molecular biology of the cell.

[127]  Steven P. Gygi,et al.  CHIP-Hsc70 Complex Ubiquitinates Phosphorylated Tau and Enhances Cell Survival* , 2004, Journal of Biological Chemistry.

[128]  P. Lehner,et al.  Ubiquitylation of MHC class I by the K3 viral protein signals internalization and TSG101‐dependent degradation , 2002, The EMBO journal.

[129]  N. Keep,et al.  Identification of Residues Required for the Interaction of BARD1 with BRCA1* , 2002, The Journal of Biological Chemistry.

[130]  Angus Chen,et al.  The Nedd8-conjugated ROC1-CUL1 Core Ubiquitin Ligase Utilizes Nedd8 Charged Surface Residues for Efficient Polyubiquitin Chain Assembly Catalyzed by Cdc34* , 2002, The Journal of Biological Chemistry.

[131]  Rachel E. Klevit,et al.  Structure of a BRCA1–BARD1 heterodimeric RING–RING complex , 2001, Nature Structural Biology.

[132]  Martin Scheffner,et al.  Protein ubiquitination involving an E1–E2–E3 enzyme ubiquitin thioester cascade , 1995, Nature.

[133]  A. Varshavsky,et al.  N-recognin/Ubc2 interactions in the N-end rule pathway. , 1993, The Journal of biological chemistry.

[134]  W. Kaelin,et al.  Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. , 1999, Science.

[135]  P. Connell,et al.  The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins , 2000, Nature Cell Biology.

[136]  C. Hill,et al.  Structural basis of ubiquitylation. , 2002, Current opinion in structural biology.

[137]  D. Ecker,et al.  Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant , 1994, Molecular and Cellular Biology.

[138]  H. Ulrich,et al.  Protein-Protein Interactions within an E2-RING Finger Complex , 2003, The Journal of Biological Chemistry.

[139]  Petri Kursula,et al.  The catalytic cycle of biosynthetic thiolase: a conformational journey of an acetyl group through four binding modes and two oxyanion holes. , 2002, Biochemistry.

[140]  D. Wolf,et al.  Endoplasmic reticulum degradation: reverse protein flow of no return , 1997, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[141]  R. Krug,et al.  The UbcH8 ubiquitin E2 enzyme is also the E2 enzyme for ISG15, an IFN-α/β-induced ubiquitin-like protein , 2004 .

[142]  U. Müller,et al.  Identification of molecular determinants required for interaction of ubiquitin-conjugating enzymes and RING finger proteins. , 2001, European journal of biochemistry.

[143]  A. Ciechanover,et al.  Components of Ubiquitin-Protein Ligase System , 1983 .

[144]  Michael J. Ellison,et al.  Crystal structure of the human ubiquitin conjugating enzyme complex, hMms2–hUbc13 , 2001, Nature Structural Biology.

[145]  K. Nakayama,et al.  U Box Proteins as a New Family of Ubiquitin-Protein Ligases* , 2001, The Journal of Biological Chemistry.

[146]  David I Stuart,et al.  Structural basis for the recognition of hydroxyproline in HIF-1 alpha by pVHL. , 2002, Nature.

[147]  Erica S. Johnson,et al.  An E3-like Factor that Promotes SUMO Conjugation to the Yeast Septins , 2001, Cell.