DNS and approximate deconvolution as a tool to analyse one-dimensional filtered flame sub-grid scale modelling

Abstract A procedure using approximate deconvolution and explicit filtering is discussed to evaluate topology-based sub-grid scale (SGS) combustion models. A direct numerical simulation (DNS) database is first filtered, then a deconvolution operator constructed from the topology-based SGS model is applied, to compare the approximate three-dimensional fields against the exact ones. The DNS is obtained from an already well-resolved large eddy simulation (LES) of a bunsen flame, by refining the mesh up to full resolution of the reaction zones and the turbulent flow scales. The SGS model evaluation via approximate deconvolution is applied to a flamelet-like closure based on the tabulation of filtered one-dimensional flames. The various sources of errors are analysed in a statistical manner in terms of flame topology. Aside from the a priori analysis, results from LES are also reported with the one-dimensional flame deconvolution and compared against those resulting from an approximate three-dimensional deconvolution, confirming the need for accounting for the full 3D flame dynamics in SGS modelling. All the study is performed with tabulated detailed chemistry.

[1]  S. B. Chin,et al.  Laminar flamelet modeling of recirculating premixed methane and propane-air combustion , 1988 .

[2]  César Dopazo,et al.  ''Relaxation'' of initial probability density functions in the turbulent convection of scalar fields , 1979 .

[3]  Olivier Colin,et al.  Large-eddy simulation of a fuel-lean premixed turbulent swirl-burner , 2008 .

[4]  Denis Veynante,et al.  Large-eddy simulation of a lifted methane jet flame in a vitiated coflow , 2008 .

[5]  C. Meneveau,et al.  A power-law flame wrinkling model for LES of premixed turbulent combustion Part II: dynamic formulation , 2002 .

[6]  H. Pitsch,et al.  Large-eddy simulation of premixed turbulent combustion using a level-set approach , 2002 .

[7]  A. Kempf,et al.  An efficient, parallel low-storage implementation of Klein’s turbulence generator for LES and DNS , 2012 .

[8]  L. Vervisch,et al.  A filtered-laminar-flame PDF sub-grid-scale closure for LES of premixed turbulent flames: II. Application to a stratified bluff-body burner , 2014 .

[9]  A. Sadiki,et al.  A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations , 2003 .

[10]  L. D. Goey,et al.  Direct Numerical Simulations of Premixed Turbulent Flames with Reduced Chemistry: Validation and Flamelet Analysis , 2005 .

[11]  P. Jenny,et al.  Joint PDF Closure of Turbulent Premixed Flames , 2013 .

[12]  D. Veynante,et al.  A Filtered Tabulated Chemistry model for LES of stratified flames , 2012 .

[13]  M. Germano,et al.  Turbulence: the filtering approach , 1992, Journal of Fluid Mechanics.

[14]  C. Meneveau,et al.  A power-law flame wrinkling model for LES of premixed turbulent combustion Part I: non-dynamic formulation and initial tests , 2002 .

[15]  P. Moin,et al.  Eddies, streams, and convergence zones in turbulent flows , 1988 .

[16]  William H. Raymond,et al.  A review of recursive and implicit filters , 1991 .

[17]  Vincent Moureau,et al.  A filtered-laminar-flame PDF sub-grid scale closure for LES of premixed turbulent flames. Part I: Formalism and application to a bluff-body burner with differential diffusion , 2014 .

[18]  Philip H. Gaskell,et al.  The modeling of aerodynamic strain rate and flame curvature effects in premixed turbulent combustion , 1998 .

[19]  M. Herrmann Numerical simulation of turbulent Bunsen flames with a level set flamelet model , 2006 .

[20]  N. Adams,et al.  An approximate deconvolution procedure for large-eddy simulation , 1999 .

[21]  Van Oijen,et al.  Analysis of a strong mass-based flame stretch model for turbulent premixed combustion , 2009 .

[22]  Johannes Janicka,et al.  Large Eddy Simulation of Turbulent Combustion Systems , 2005 .

[23]  C Cemil Bekdemir,et al.  Modeling Diesel engine combustion using pressure dependent Flamelet Generated Manifolds , 2011 .

[24]  J. Janicka,et al.  LES of lifted flames in a gas turbine model combustor using top-hat filtered PFGM chemistry , 2012 .

[25]  C. Dopazo,et al.  Local volumetric dilatation rate and scalar geometries in a premixed methane–air turbulent jet flame , 2015 .

[26]  A Similarity Subgrid Model for Premixed Turbulent Combustion , 2009 .

[27]  de Lph Philip Goey,et al.  Modeling of complex premixed burner systems by using flamelet-generated manifolds , 2001 .

[28]  P. Sagaut,et al.  Advanced large-eddy simulation for lattice Boltzmann methods: The approximate deconvolution model , 2011 .

[29]  J. M. Pastor,et al.  RANS modelling of a lifted H2/N2 flame using an unsteady flamelet progress variable approach with presumed PDF , 2015 .

[30]  F. Williams,et al.  Flamelet effects on local flow in turbulent premixed bunsen flames , 2003 .

[31]  P. Moin,et al.  DIRECT NUMERICAL SIMULATION: A Tool in Turbulence Research , 1998 .

[32]  M. Germano,et al.  On the Extension of the Dynamic Modelling Procedure to Turbulent Reacting Flows , 1997 .

[33]  Luc Vervisch,et al.  Large eddy simulation of forced ignition of an annular bluff-body burner , 2010 .

[34]  A. Sedaghat,et al.  Generation of PDFS for flame curvature and for flame stretch rate in premixed turbulent combustion , 2003 .

[35]  Joseph C. Oefelein,et al.  Error analysis of large-eddy simulation of the turbulent non-premixed sydney bluff-body flame , 2011 .

[36]  Hong G. Im,et al.  Correlation of Flame Speed with Stretch in Turbulent Premixed Methane/Air Flames , 1997 .

[37]  Tabulation of NOx chemistry for Large-Eddy Simulation of non-premixed turbulent flames , 2009 .

[38]  Juan Pedro Mellado,et al.  Reconstruction subgrid models for nonpremixed combustion , 2003 .

[39]  S. S. Shy,et al.  Spatiotemporal measurements of flame stretch and propagation rates for lean and rich CH4/air premixed flames interacting with a turbulent-wake , 2009 .

[40]  Joseph Mathew Large eddy simulation of a premixed flame with approximate deconvolution modeling , 2002 .

[41]  F. Ducros,et al.  A thickened flame model for large eddy simulations of turbulent premixed combustion , 2000 .

[42]  Van Oijen,et al.  Detailed analysis of the mass burning rate of stretched flames including preferential diffusion effects , 2006 .

[43]  Antony Jameson,et al.  Flux-limited schemes for the compressible Navier-Stokes equations , 1995 .

[44]  T. Treurniet Direct Numerical Simulation of Premixed Turbulent Combustion , 2001 .

[45]  L. Vervisch,et al.  Hybrid presumed pdf and flame surface density approaches for Large-Eddy Simulation of premixed turbulent combustion: Part 1: Formalism and simulation of a quasi-steady burner , 2011 .

[46]  Denis Veynante,et al.  Implementation of a dynamic thickened flame model for large eddy simulations of turbulent premixed combustion , 2011 .

[47]  K.N.C. Bray,et al.  The challenge of turbulent combustion , 1996 .

[48]  M. Germano A new deconvolution method for large eddy simulation , 2009 .

[49]  Nasser Darabiha,et al.  A filtered tabulated chemistry model for LES of premixed combustion , 2010 .

[50]  Philip H. Gaskell,et al.  Premixed flamelet modelling: Factors influencing the turbulent heat release rate source term and the turbulent burning velocity , 2005 .

[51]  Jacqueline H. Chen,et al.  Comparison of direct numerical simulation of lean premixed methane–air flames with strained laminar flame calculations , 2006 .

[52]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[53]  D. Veynante,et al.  Modeling chemical flame structure and combustion dynamics in LES , 2011 .

[54]  M. Z. Haq,et al.  Wrinkling and curvature of laminar and turbulent premixed flames , 2002 .

[55]  Luc Vervisch,et al.  Multidimensional flamelet-generated manifolds for partially premixed combustion , 2010 .

[56]  C. Dopazo,et al.  Functional formulation of nonisothermal turbulent reactive flows , 1974 .

[57]  L. Vervisch,et al.  Composition-space premixed flamelet solution with differential diffusion for in situ flamelet-generated manifolds , 2011 .

[58]  Luc Vervisch,et al.  Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flows , 2008, J. Comput. Phys..

[59]  Heinz Pitsch,et al.  A level set formulation for premixed combustion LES considering the turbulent flame structure , 2009 .

[60]  de Lph Philip Goey,et al.  Incorporating unsteady flow-effects beyond the extinction limit in flamelet-generated manifolds , 2009 .

[61]  Jacqueline H. Chen,et al.  Numerical analysis of reaction-diffusion effects on species mixing rates in turbulent premixed methane-air combustion , 2010 .

[62]  J. B. Moss,et al.  Flamelet Crossing Frequencies and Mean Reaction Rates in Premixed Turbulent Combustion , 1984 .

[63]  Vincent Guinot,et al.  High-Order Fluxes for Conservative Skew-Symmetric-like Schemes in Structured Meshes , 2000 .

[64]  Nilanjan Chakraborty,et al.  Unsteady effects of strain rate and curvature on turbulent premixed flames in an inflow-outflow configuration , 2004 .

[65]  De Goey,et al.  A flamelet description of premixed laminar flames and the relation with flame stretch , 1999 .

[66]  A. W. Vreman An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications , 2004 .

[67]  Salvador Navarro-Martinez,et al.  Large eddy simulation of autoignition with a subgrid probability density function method , 2007 .

[68]  Charles J. Mueller,et al.  Effects of unsteady stretch on the strength of a freely-propagating flame wrinkled by a vortex , 1996 .

[69]  S. Frankel,et al.  Large eddy simulation of a nonpremixed reacting jet: Application and assessment of subgrid-scale combustion models , 1998 .

[70]  A. Kempf,et al.  LES of the Sydney piloted spray flame series with the PFGM/ATF approach and different sub-filter models , 2015 .

[71]  Luc Vervisch,et al.  DNS of a premixed turbulent V flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI-tabulated chemistry , 2005 .

[72]  Pham Dinh Tao,et al.  An optimization-based approach to detailed chemistry tabulation: Automated progress variable definition , 2013 .

[73]  D. Haworth Progress in probability density function methods for turbulent reacting flows , 2010 .

[74]  M. Eiermann,et al.  A Constrained Control Approach for the Automated Choice of an Optimal Progress Variable for Chemistry Tabulation , 2015 .

[75]  Norbert Peters,et al.  The detailed flame structure of highly stretched turbulent premixed methane-air flames , 1996 .

[76]  Nasser Darabiha,et al.  Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion , 2000 .

[77]  J. Ferziger,et al.  Explicit Filtering and Reconstruction Turbulence Modeling for Large-Eddy Simulation of Neutral Boundary Layer Flow , 2005 .

[78]  L. Vervisch,et al.  Large Eddy Simulation of turbulent flames in a Trapped Vortex Combustor (TVC) – A flamelet presumed-pdf closure preserving laminar flame speed , 2012 .

[79]  N. Peters,et al.  Multiscale combustion and turbulence , 2009 .

[80]  Analysis of a filtered flamelet approach for coarse DNS of premixed turbulent combustion , 2015 .

[81]  Vincent Moureau,et al.  From Large-Eddy Simulation to Direct Numerical Simulation of a lean premixed swirl flame: Filtered laminar flame-PDF modeling , 2011 .

[82]  Luc Vervisch,et al.  Large Eddy Simulation of premixed turbulent combustion using approximate deconvolution and explicit flame filtering , 2015 .