Silicon Carbide-Based DNA Sensing Technologies.

DNA sensing is critical in various applications such as the early diagnosis of diseases and the investigation of forensic evidence, food processing, agriculture, environmental protection, etc. As a wide-bandgap semiconductor with excellent chemical, physical, electrical, and biocompatible properties, silicon carbide (SiC) is a promising material for DNA sensors. In recent years, a variety of SiC-based DNA-sensing technologies have been reported, such as nanoparticles and quantum dots, nanowires, nanopillars, and nanowire-based field-effect-transistors, etc. This article aims to provide a review of SiC-based DNA sensing technologies, their functions, and testing results.

[1]  S. Saddow Silicon Carbide Technology for Advanced Human Healthcare Applications , 2022, Micromachines.

[2]  V. Stambouli,et al.  Progress in SiC nanowire field-effect-transistors for integrated circuits and sensing applications , 2022, Microelectronic Engineering.

[3]  Yanjun Ding,et al.  SiC-functionalized fluorescent aptasensor for determination of Proteus mirabilis , 2020, Microchimica Acta.

[4]  Jifeng Cai,et al.  Bacteria-targeting BSA-stabilized SiC nanoparticles as a fluorescent nanoprobe for forensic identification of saliva , 2019, Microchimica Acta.

[5]  K. Cheong,et al.  Post deposition annealing effect on properties of Y2O3/Al2O3 stacking gate dielectric on 4H-SiC , 2019, Materials Letters.

[6]  Y. Liu,et al.  Detection of 12 Common Food-Borne Bacterial Pathogens by TaqMan Real-Time PCR Using a Single Set of Reaction Conditions , 2019, Front. Microbiol..

[7]  C. Haisch,et al.  Portable bacteria-capturing chip for direct surface-enhanced Raman scattering identification of urinary tract infection pathogens , 2018, Royal Society Open Science.

[8]  Ying Lu,et al.  Sensitive and rapid detection of pathogenic bacteria from urine samples using multiplex recombinase polymerase amplification. , 2018, Lab on a chip.

[9]  Haifeng Dong,et al.  Photoluminescent two-dimensional SiC quantum dots for cellular imaging and transport , 2018, Nano Research.

[10]  Rafiq Ahmad,et al.  Recent advances in nanowires-based field-effect transistors for biological sensor applications , 2017, Biosensors and Bioelectronics.

[11]  Jong-Hoon Kim,et al.  A Microneedle Functionalized with Polyethyleneimine and Nanotubes for Highly Sensitive, Label-Free Quantification of DNA , 2017, Sensors.

[12]  V. Stambouli,et al.  Chemical Stability of Si-SiC Nanostructures under Physiological Conditions , 2016, 2016 European Conference on Silicon Carbide & Related Materials (ECSCRM).

[13]  V. Stambouli,et al.  DNA Detection Using SiC Nanowire Based Transistor , 2016 .

[14]  V. Stambouli,et al.  A silicon carbide nanowire field effect transistor for DNA detection , 2016, Nanotechnology.

[15]  Chunsheng Wu,et al.  DNA Immobilization and Hybridization Detection by the Intrinsic Molecular Charge Using Capacitive Field-Effect Sensors Modified with a Charged Weak Polyelectrolyte Layer. , 2015, ACS applied materials & interfaces.

[16]  V. Stambouli,et al.  Silicon Carbide Nanowire Devices for Label-Free Electrical DNA Detection , 2015 .

[17]  Chih-Fang Huang,et al.  Fabrication and characterization of single-crystal 4H-SiC microactuators for MHz frequency operation and determination of Young's modulus , 2014 .

[18]  H. Duan,et al.  Improving the adhesion of hydrogen silsesquioxane (HSQ) onto various substrates for electron-beam lithography by surface chemical modification , 2014 .

[19]  J. Cooper,et al.  Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications , 2014 .

[20]  L. Latu-Romain,et al.  Bio-functionalization of silicon carbide nanostructures for SiC nanowire-based sensors realization. , 2014, Journal of nanoscience and nanotechnology.

[21]  F. Patolsky,et al.  Morphological and chemical stability of silicon nanostructures and their molecular overlayers under physiological conditions: towards long-term implantable nanoelectronic biosensors , 2014, Journal of Nanobiotechnology.

[22]  K. Balasubramanian,et al.  25th Anniversary Article: Label‐Free Electrical Biodetection Using Carbon Nanostructures , 2014, Advanced materials.

[23]  Wei Zhou,et al.  Long Term Stability of Nanowire Nanoelectronics in Physiological Environments , 2014, Nano letters.

[24]  Wei Du,et al.  Surface plasmon resonance based silicon carbide optical waveguide sensor , 2014 .

[25]  L. Latu-Romain,et al.  First Experimental Functionalization Results of SiC Nanopillars for Biosensing Applications , 2013 .

[26]  M. Tsai,et al.  Demonstration of Lateral IGBTs in 4H-SiC , 2013, IEEE Electron Device Letters.

[27]  M. V. Rao,et al.  Selective streptavidin bioconjugation on silicon and silicon carbide nanowires for biosensor applications , 2013 .

[28]  Pál Maák,et al.  Silicon carbide quantum dots for bioimaging , 2013 .

[29]  Jing Wang,et al.  Fabrication and photoluminescence of SiC quantum dots stemming from 3C, 6H, and 4H polytypes of bulk SiC , 2012 .

[30]  M. Tsai,et al.  Design and Fabrication of 4H–SiC Lateral High-Voltage Devices on a Semi-Insulating Substrate , 2012, IEEE Transactions on Electron Devices.

[31]  E. Bano,et al.  Rectifying Source and Drain Contacts for Effective Carrier Transport Modulation of Extremely Doped SiC Nanowire FETs , 2011, IEEE Transactions on Nanotechnology.

[32]  N. Yang,et al.  Nanocrystalline 3C-SiC electrode for biosensing applications. , 2011, Analytical chemistry.

[33]  A. Salimi,et al.  SiC nanoparticles-modified glassy carbon electrodes for simultaneous determination of purine and pyrimidine DNA bases. , 2011, Biosensors & bioelectronics.

[34]  Regina Stockmann,et al.  Top-Down Processed SOI Nanowire Devices for Biomedical Applications , 2011 .

[35]  Yit‐Tsong Chen,et al.  Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation , 2011 .

[36]  Kian Ping Loh,et al.  Optimizing label-free DNA electrical detection on graphene platform. , 2011, Analytical chemistry.

[37]  J. Gong,et al.  Demonstration of 3500-V 4H-SiC Lateral MOSFETs , 2011, IEEE Electron Device Letters.

[38]  T. Sudarshan,et al.  Doping Dependence of Thermal Oxidation on n-Type 4H-SiC , 2010, IEEE Transactions on Electron Devices.

[39]  G. Gabriel,et al.  New Generation of SiC Based Biodevices Implemented on 4” Wafers , 2010 .

[40]  Hee‐Tae Jung,et al.  The Effect of Network Density on the DNA-Sensing Performance of Single-Walled Carbon Nanotubes , 2009 .

[41]  A. Salimi,et al.  Electrooxidation of insulin at silicon carbide nanoparticles modified glassy carbon electrode , 2009 .

[42]  Pooi See Lee,et al.  DNA sensing by field-effect transistors based on networks of carbon nanotubes. , 2007, Journal of the American Chemical Society.

[43]  A. Spetz,et al.  Surface functionalization and biomedical applications based on SiC , 2007 .

[44]  C. Pradier,et al.  A DNA biosensor based on peptide nucleic acids on gold surfaces. , 2007, Biosensors & bioelectronics.

[45]  Zhiqiang Gao,et al.  Silicon nanowire arrays for label-free detection of DNA. , 2007, Analytical chemistry.

[46]  W. J. Choyke,et al.  Columnar Morphology of Porous Silicon Carbide as a Protein-Permeable Membrane for Biosensors and Other Applications , 2006 .

[47]  C. Lieber,et al.  Nanowire-based biosensors. , 2006, Analytical chemistry.

[48]  Liu Zhongli,et al.  The ICP etching technology of 3C-SiC films , 2006 .

[49]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[50]  P. Godignon SiC Materials and Technologies for Sensors Development , 2005 .

[51]  Gengfeng Zheng,et al.  Electrical detection of single viruses. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[52]  M. Tarlov,et al.  Quantitative analysis and characterization of DNA immobilized on gold. , 2003, Journal of the American Chemical Society.

[53]  Olivier Joubert,et al.  Ion flux composition in HBr/Cl2/O2 and HBr/Cl2/O2/CF4 chemistries during silicon etching in industrial high-density plasmas , 2002 .

[54]  C. Klages,et al.  The deposition and characterization of β-SiC and diamond/β-SiC composite films , 1993 .

[55]  P. Righetti,et al.  Isoelectric points and molecular weights of proteins : A new table , 1981 .

[56]  P. Shaffer A review of the structure of silicon carbide , 1969 .

[57]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[58]  I. Kolthoff,et al.  The Silicon Carbide Electrode , 1941 .

[59]  Wei Du,et al.  Silicon carbide based surface plasmon resonance waveguide sensor with a bimetallic layer for improved sensitivity , 2017 .

[60]  L. Blum,et al.  DNA biosensors and microarrays. , 2008, Chemical reviews.

[61]  Konstantin Vassilevski,et al.  Prospects for SiC electronics and sensors , 2008 .

[62]  Charles M. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.