Integer Version of Ring-LWE and its Applications

In this work, we introduce an integer version of ring-LWE (I-RLWE) over the polynomial rings and present a public key encryption based on I-RLWE. The security of our scheme relies on the computational hardness assumption of the I-RLWE problem.

[1]  Joachim von zur Gathen,et al.  Modern Computer Algebra: Gauß , 2013 .

[2]  Léo Ducas,et al.  Ring-LWE in Polynomial Rings , 2012, IACR Cryptol. ePrint Arch..

[3]  Kristin E. Lauter,et al.  Provably Weak Instances of Ring-LWE , 2015, CRYPTO.

[4]  Craig Gentry,et al.  (Leveled) fully homomorphic encryption without bootstrapping , 2012, ITCS '12.

[5]  Chris Peikert,et al.  On Ideal Lattices and Learning with Errors over Rings , 2010, EUROCRYPT.

[6]  Kousha Etessami,et al.  Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations , 2005, JACM.

[7]  Ron Steinfeld,et al.  Making NTRU as Secure as Worst-Case Problems over Ideal Lattices , 2011, EUROCRYPT.

[8]  Daniele Micciancio,et al.  Worst-case to average-case reductions based on Gaussian measures , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[9]  Vinod Vaikuntanathan,et al.  Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages , 2011, CRYPTO.

[10]  Kristin E. Lauter,et al.  Weak Instances of PLWE , 2014, Selected Areas in Cryptography.

[11]  Joseph H. Silverman,et al.  NTRU: A Ring-Based Public Key Cryptosystem , 1998, ANTS.

[12]  David Naccache,et al.  On the Hardness of the Mersenne Low Hamming Ratio Assumption , 2017, IACR Cryptol. ePrint Arch..

[13]  Antoine Joux,et al.  A New Public-Key Cryptosystem via Mersenne Numbers , 2018, IACR Cryptol. ePrint Arch..

[14]  Damien Stehlé,et al.  Worst-case to average-case reductions for module lattices , 2014, Designs, Codes and Cryptography.

[15]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[16]  Chris Peikert,et al.  How (Not) to Instantiate Ring-LWE , 2016, SCN.

[17]  Chris Peikert,et al.  Public-key cryptosystems from the worst-case shortest vector problem: extended abstract , 2009, STOC '09.

[18]  Oded Regev,et al.  On lattices, learning with errors, random linear codes, and cryptography , 2009, JACM.

[19]  David Cash,et al.  Fast Cryptographic Primitives and Circular-Secure Encryption Based on Hard Learning Problems , 2009, CRYPTO.

[20]  Damien Stehlé,et al.  Classical hardness of learning with errors , 2013, STOC '13.

[21]  Chris Peikert,et al.  On Ideal Lattices and Learning with Errors over Rings , 2010, JACM.

[22]  Vinod Vaikuntanathan,et al.  On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption , 2012, STOC '12.

[23]  Oded Regev,et al.  Lattice-Based Cryptography , 2006, CRYPTO.

[24]  Daniele Micciancio,et al.  Generalized Compact Knapsacks Are Collision Resistant , 2006, ICALP.