On Real Quadratic Number Fields Suitable for Cryptography

We present empirical results that suggest that there are real quadratic fields with properties similar to imaginary quadratic fields in terms of size and structure of the class group. Therefore, these class groups can also be used for encryption schemes such as the ElGamal scheme, where up to now, only class groups of imaginary quadratic fields have been considered. Some security aspects are also addressed.

[1]  Alfred Menezes,et al.  Handbook of Applied Cryptography , 2018 .

[2]  Safuat Hamdy,et al.  Über die Sicherheit und Effizienz kryptographischer Verfahren mit Klassengruppen imaginär-quadratischer Zahlkörper , 2002 .

[3]  Antoine Joux,et al.  Why Textbook ElGamal and RSA Encryption Are Insecure , 2000, ASIACRYPT.

[4]  Bodo Möller,et al.  Security of Cryptosystems Based on Class Groups of Imaginary Quadratic Orders , 2000, ASIACRYPT.

[5]  Ulrich Vollmer,et al.  Asymptotically Fast Discrete Logarithms in Quadratic Number Fields , 2000, ANTS.

[6]  Michael J. Jacobson,et al.  Subexponential class group computation in quadratic orders , 1999 .

[7]  Dan Boneh,et al.  The Decision Diffie-Hellman Problem , 1998, ANTS.

[8]  Taher El Gamal A public key cryptosystem and a signature scheme based on discrete logarithms , 1984, IEEE Trans. Inf. Theory.

[9]  L. Holzer Cycles of reduced ideals of quadratic fields , 1937 .

[10]  Daniel Schielzeth Realisierung der ElGamal-Verschl?usselung in quadratischen Zahlk?orpern , 2003 .

[11]  Johannes Buchmann,et al.  A Survey on {IQ} Cryptography , 2001 .

[12]  Detlef Hühnlein,et al.  Quadratic orders for {NESSIE} - Overview and parameter sizes of three public key families , 2000 .

[13]  Alejandro Buchmann,et al.  An analysis of the reduction algorithms for binary quadratic forms , 1997 .

[14]  H. C. Williams,et al.  Short Representation of Quadratic Integers , 1995 .

[15]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[16]  Henri Cohen,et al.  Class Groups of Number Fields: Numerical Heuristics , 1987 .

[17]  Taher ElGamal,et al.  A public key cyryptosystem and signature scheme based on discrete logarithms , 1985 .

[18]  H. Lang Über eine Gattung elementar-arithmetischer Klasseninvarianten reell-quadratischer Zahlkörper. , 1968 .

[19]  P. Roquette H. Hasse, Zahlentheorie. February, erweiterte Auflage. XVI + 611 S. mit 49 Abb. Berlin 1963. Akademie-Verlag. Preis geb. DM 68,- . , 1964 .