Evaluation of the Added Value of Regional Ensemble Forecasts on Global Ensemble Forecasts

AbstractThe regional single-model-based Aire Limitee Adaptation Dynamique Developpement International–Limited Area Ensemble Forecasting (ALADIN-LAEF) ensemble prediction system (EPS) is evaluated and compared with the global ECMWF-EPS to investigate the added value of regional to global EPS models. ALADIN-LAEF consists of 16 perturbed members at 18-km horizontal resolution, while ECMWF-EPS includes 50 perturbed members at 50-km horizontal resolution. In ALADIN-LAEF, the atmospheric initial condition uncertainty is quantified by using blending, which combines large-scale uncertainty generated by the ECMWF-EPS singular-vector approach with small-scale perturbations resolved by the ALADIN breeding technique. The surface initial condition perturbations are generated by use of the noncycling surface breeding (NCSB) technique, and different physics schemes are employed for different forecast members to account for model uncertainties. The verification and comparison have been carried out for a 2-month period du...

[1]  K. Droegemeier,et al.  Objective Verification of the SAMEX ’98 Ensemble Forecasts , 2001 .

[2]  U. Germann,et al.  MAP D-PHASE: Real-Time Demonstration of Weather Forecast Quality in the Alpine region , 2009 .

[3]  Geoff DiMego,et al.  An Overview of the Beijing 2008 Olympics Research and Development Project (B08RDP) , 2012 .

[4]  P. L. Houtekamer,et al.  Toward Random Sampling of Model Error in the Canadian Ensemble Prediction System , 2010 .

[5]  Neill E. Bowler,et al.  Ensemble transform Kalman filter perturbations for a regional ensemble prediction system , 2009 .

[6]  Lars Isaksen,et al.  Potential use of an ensemble of analyses in the ECMWF Ensemble Prediction System , 2008 .

[7]  Clifford F. Mass,et al.  Aspects of Effective Mesoscale, Short-Range Ensemble Forecasting , 2005 .

[8]  David J. Stensrud,et al.  Using Initial Condition and Model Physics Perturbations in Short-Range Ensemble Simulations of Mesoscale Convective Systems , 2000 .

[9]  David J. Stensrud,et al.  Effects of Coarsely Resolved and Temporally Interpolated Lateral Boundary Conditions on the Dispersion of Limited-Area Ensemble Forecasts , 2004 .

[10]  Jun Du,et al.  Short-Range Ensemble Forecasting of Quantitative Precipitation , 1997 .

[11]  R. Buizza,et al.  A Comparison of the ECMWF, MSC, and NCEP Global Ensemble Prediction Systems , 2005 .

[12]  Roberto Buizza,et al.  3D‐Var Hessian singular vectors and their potential use in the ECMWF ensemble prediction system , 1999 .

[13]  Neill E. Bowler,et al.  The MOGREPS short‐range ensemble prediction system , 2008 .

[14]  Roberto Buizza,et al.  TIGGE: Preliminary results on comparing and combining ensembles , 2008 .

[15]  R. Buizza,et al.  Application of a Limited-Area Short-Range Ensemble Forecast System to a Case of Heavy Rainfall in the Mediterranean Region , 2004 .

[16]  Lizzie S. R. Froude TIGGE: Comparison of the Prediction of Northern Hemisphere Extratropical Cyclones by Different Ensemble Prediction Systems , 2011 .

[17]  D. Stensrud,et al.  Evaluation of a Short-Range Multimodel Ensemble System , 2001 .

[18]  P. L. Houtekamer,et al.  A System Simulation Approach to Ensemble Prediction , 1996 .

[19]  T. Palmer,et al.  Stochastic representation of model uncertainties in the ECMWF ensemble prediction system , 2007 .

[20]  Yong Wang,et al.  The Central European limited‐area ensemble forecasting system: ALADIN‐LAEF , 2011 .

[21]  T. Iversen,et al.  Evaluation of ‘GLAMEPS’—a proposed multimodel EPS for short range forecasting , 2011 .

[22]  Brian A. Colle,et al.  Evaluation of a Mesoscale Short-Range Ensemble Forecast System over the Northeast United States , 2007 .

[23]  W. Briggs Statistical Methods in the Atmospheric Sciences , 2007 .

[24]  Guillem Candille,et al.  A Regional Ensemble Prediction System Based on Moist Targeted Singular Vectors and Stochastic Parameter Perturbations , 2008 .

[25]  Geoff DiMego,et al.  21.3 The NOAA/NWS/NCEP Short Range Ensemble Forecast (SREF) system: Evaluation of an initial condition vs multiple model physics ensemble approach , 2004 .

[26]  Thomas M. Hamill,et al.  Will Perturbing Soil Moisture Improve Warm-Season Ensemble Forecasts? A Proof of Concept , 2006 .

[27]  Roberto Buizza,et al.  The Singular-Vector Structure of the Atmospheric Global Circulation , 1995 .

[28]  E. Grimit,et al.  Initial Results of a Mesoscale Short-Range Ensemble Forecasting System over the Pacific Northwest , 2002 .

[29]  F. Molteni,et al.  The ECMWF Ensemble Prediction System: Methodology and validation , 1996 .

[30]  Yuejian Zhu,et al.  Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast system , 2008 .

[31]  Yong Wang,et al.  A strategy for perturbing surface initial conditions in LAMEPS , 2010 .

[32]  Eugenia Kalnay,et al.  Ensemble Forecasting at NMC: The Generation of Perturbations , 1993 .

[33]  Inger-Lise Frogner,et al.  Limited‐area ensemble predictions at the Norwegian Meteorological Institute , 2006 .

[34]  K. Droegemeier,et al.  Multiresolution Ensemble Forecasts of an Observed Tornadic Thunderstorm System. Part I: Comparsion of Coarse- and Fine-Grid Experiments , 2006 .

[35]  T. Palmer Extended-range atmospheric prediction and the Lorenz model , 1993 .

[36]  Tim N. Palmer,et al.  Ensemble forecasting , 2008, J. Comput. Phys..

[37]  A. Montani,et al.  A spatial verification method applied to the evaluation of high‐resolution ensemble forecasts , 2008 .

[38]  Thomas M. Hamill,et al.  Verification of Eta–RSM Short-Range Ensemble Forecasts , 1997 .