Some results on the upper bound of optimal values in interval convex quadratic programming

One of the fundamental problems in interval quadratic programming is to compute the range of optimal values. For minimized problem with equality constraint, computing the upper bound of the optimal values is known to be NP-hard. One kind of the effective methods for computing the upper bound of interval quadratic programming is so called dual method, based on the dual property of the problem. To obtain the exact upper bound, the dual methods require that the duality gap is zero. However, it is not an easy task to check whether this condition is true when the data may vary inside intervals. In this paper, we first present an easy and efficient method for checking the zero duality gap. Then some relations between the exact upper bound and the optimal value of the dual model considered in dual methods are discussed in detail. We also report some numerical results and remarks to give an insight into the dual method's behavior.

[1]  Shiang-Tai Liu,et al.  A numerical solution method to interval quadratic programming , 2007, Appl. Math. Comput..

[2]  R. Baker Kearfott,et al.  Introduction to Interval Analysis , 2009 .

[3]  Milan Hladík,et al.  How to determine basis stability in interval linear programming , 2012, Optimization Letters.

[4]  Milan Hladík Optimal value range in interval linear programming , 2009, Fuzzy Optim. Decis. Mak..

[5]  M. Fiedler,et al.  Linear Optimization Problems with Inexact Data , 2006 .

[6]  Oleg A. Prokopyev,et al.  Checking solvability of systems of interval linear equations and inequalities via mixed integer programming , 2009, Eur. J. Oper. Res..

[7]  Wei Li,et al.  Checking weak optimality of the solution to linear programming with interval right-hand side , 2014, Optim. Lett..

[8]  Milan Hladı´k Weak and strong solvability of interval linear systems of equations and inequalities , 2013 .

[9]  M. Hladík Optimal value bounds in nonlinear programming with interval data , 2011 .

[10]  Wei Li,et al.  Localized solutions to interval linear equations , 2013, J. Comput. Appl. Math..

[11]  Wei Li,et al.  New method for computing the upper bound of optimal value in interval quadratic program , 2015, J. Comput. Appl. Math..

[12]  Xiao Liu,et al.  Generalized solutions to interval linear programmes and related necessary and sufficient optimality conditions , 2015, Optim. Methods Softw..

[13]  Milan Hladík On approximation of the best case optimal value in interval linear programming , 2014, Optim. Lett..

[14]  W. Dorn Duality in Quadratic Programming... , 2011 .

[15]  Wei Li,et al.  Strong optimal solutions of interval linear programming , 2013 .

[16]  Sergey P. Shary,et al.  A New Technique in Systems Analysis Under Interval Uncertainty and Ambiguity , 2002, Reliab. Comput..

[17]  Cécile Murat,et al.  Linear Programming with interval right handsides June 29 , 2007 , 2007 .

[18]  Milan Vlach,et al.  Satisficing solutions and duality in interval and fuzzy linear programming , 2003, Fuzzy Sets Syst..

[19]  Frantisek Mráz Calculating the exact bounds of optimal valuesin LP with interval coefficients , 1998, Ann. Oper. Res..

[20]  John W. Chinneck,et al.  Linear programming with interval coefficients , 2000, J. Oper. Res. Soc..

[21]  L. Liu,et al.  An interval nonlinear program for the planning of waste management systems with economies-of-scale effects - A case study for the region of Hamilton, Ontario, Canada , 2006, Eur. J. Oper. Res..

[22]  H. Ishibuchi,et al.  Multiobjective programming in optimization of the interval objective function , 1990 .

[23]  Wei Li,et al.  Numerical solution method for general interval quadratic programming , 2008, Appl. Math. Comput..

[24]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[25]  A. Neumaier Interval methods for systems of equations , 1990 .