Symmetry-protected phases for measurement-based quantum computation.

Ground states of spin lattices can serve as a resource for measurement-based quantum computation. Ideally, the ability to perform quantum gates via measurements on such states would be insensitive to small variations in the Hamiltonian. Here, we describe a class of symmetry-protected topological orders in one-dimensional systems, any one of which ensures the perfect operation of the identity gate. As a result, measurement-based quantum gates can be a robust property of an entire phase in a quantum spin lattice, when protected by an appropriate symmetry.

[1]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[2]  Guifre Vidal,et al.  Tensor network decompositions in the presence of a global symmetry , 2009, 0907.2994.

[3]  Frank Pollmann,et al.  Symmetry protection of topological phases in one-dimensional quantum spin systems , 2009, 0909.4059.

[4]  Xiao-Gang Wen,et al.  Two-dimensional symmetry-protected topological orders and their protected gapless edge excitations , 2011, 1106.4752.

[5]  L. Venuti,et al.  Analytic relations between localizable entanglement and string correlations in spin systems. , 2005, Physical review letters.

[6]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[7]  A. Miyake Quantum computational capability of a 2D valence bond solid phase , 2010, 1009.3491.

[8]  Adam Kleppner,et al.  Multipliers on Abelian groups , 1965 .

[9]  Tzu-Chieh Wei,et al.  Affleck-Kennedy-Lieb-Tasaki state on a honeycomb lattice is a universal quantum computational resource. , 2011, Physical review letters.

[10]  Kennedy,et al.  Rigorous results on valence-bond ground states in antiferromagnets. , 1987, Physical review letters.

[11]  D. Gross,et al.  Quantum computational webs , 2008, 0810.2542.

[12]  J I Cirac,et al.  String order and symmetries in quantum spin lattices. , 2008, Physical review letters.

[13]  Tzu-Chieh Wei,et al.  The 2D AKLT state is a universal quantum computational resource , 2010 .

[14]  Stephen D Bartlett,et al.  Identifying phases of quantum many-body systems that are universal for quantum computation. , 2008, Physical review letters.

[15]  F. Verstraete,et al.  Matrix product states represent ground states faithfully , 2005, cond-mat/0505140.

[16]  D. Gross,et al.  Measurement-based quantum computation beyond the one-way model , 2007, 0706.3401.

[17]  Vlatko Vedral,et al.  Quantum phase transition between cluster and antiferromagnetic states , 2011, 1103.0251.

[18]  M. Hastings,et al.  An area law for one-dimensional quantum systems , 2007, 0705.2024.

[19]  Xiao-Gang Wen,et al.  Classification of gapped symmetric phases in one-dimensional spin systems , 2010, 1008.3745.

[20]  David Pérez-García,et al.  Classifying quantum phases using matrix product states and projected entangled pair states , 2011 .

[21]  H. Briegel,et al.  Measurement-based quantum computation , 2009, 0910.1116.

[22]  X. Wen,et al.  Symmetry protected topological orders and the cohomology class of their symmetry group , 2011 .

[23]  Bei Zeng,et al.  Gapped two-body hamiltonian whose unique ground state is universal for one-way quantum computation. , 2008, Physical review letters.

[24]  A. Miyake,et al.  Measurement-based quantum computer in the gapped ground state of a two-body Hamiltonian. , 2008, Physical review letters.

[25]  ANDREI YAFAEV,et al.  CHARACTERS OF FINITE GROUPS , 2010 .

[26]  Frank Pollmann,et al.  Entanglement spectrum of a topological phase in one dimension , 2009, 0910.1811.

[27]  E. Lieb,et al.  Valence bond ground states in isotropic quantum antiferromagnets , 1988 .

[28]  R. Frucht Über die Darstellung endlicher Abelscher Gruppen durch Kollineationen. , 2009 .

[29]  Xiao-Gang Wen,et al.  Tensor-Entanglement-Filtering Renormalization Approach and Symmetry Protected Topological Order , 2009, 0903.1069.

[30]  C. P. Sun,et al.  Quantum computation based on d-level cluster state (11 pages) , 2003, quant-ph/0304054.

[31]  Joseph M Renes,et al.  Quantum computational renormalization in the Haldane phase. , 2010, Physical review letters.

[32]  Akimasa Miyake,et al.  Quantum computation on the edge of a symmetry-protected topological order. , 2010, Physical review letters.

[33]  G J Milburn,et al.  Measurement-based teleportation along quantum spin chains. , 2005, Physical review letters.