Channeling Flow and Solute Transport in a Single Fracture

Groundwater in fractured media plays an important role in drinking water supply, and the understanding of its principle mechanisms is essential for securing the groundwater exploring and utilization. In this paper, a novel conceptual fracture model was presented on the basis of the reality of channeling flow in natural fractures and laboratory experiments were conducted for the purpose of getting a better understanding of the step-like breakthrough curve (BTC). Experimental results were fitted with convective dispersive equation (CDE) and compared with those of the finite element method (FEM) models. Results showed that the traditional one-dimensional CDE was invalid in the fitting of a step-like BTC and needed to be improved.