A meshless approach to non-local damage modelling of concrete

Abstract A non-linear continuum damage mechanics model for concrete constructions is analysed using a radial point interpolation meshless method (RPIM). The fundamental mathematical relations and the material model are fully characterized. The 2D plane stress RPIM formulation is extended to a rate-independent standard (local) damage model considering both tension and compression static states. Additionally, in this work, the local damage formulation is modified considering a non-local constitutive damage criterion with regard to a Helmholtz free energy potential. Here, the internal variational fields, such as local and non-local damage variables, are determined by a return-mapping damage algorithm. Due to the non-linear nature of the phenomenon, a displacement controlled Newton-Raphson iterative approach is adopted to attain the non-linear damage solution. In the end, the performance of the proposed non-local damage model is evaluated using an experimental test of a notched-three-point bending beam available in the literature. The obtained solution shows that the meshless methods are capable to effectively analyse concrete structures assuming a non-linear non-local continuum damage model.

[1]  A. Hartmaier,et al.  Formulation of nonlocal damage models based on spectral methods for application to complex microstructures , 2015 .

[2]  Matti Ristinmaa,et al.  FE-formulation of a nonlocal plasticity theory , 1996 .

[3]  J. Pamin,et al.  Gradient-dependent plasticity in numerical simulation of localization phenomena , 1994 .

[4]  Rena C. Yu,et al.  A comparative study between discrete and continuum models to simulate concrete fracture , 2008 .

[5]  B. P. Patel,et al.  An investigation on nonlocal continuum damage models for composite laminated panels , 2014 .

[6]  Gui-Rong Liu,et al.  A point interpolation method for simulating dissipation process of consolidation , 2001 .

[7]  D. Krajcinovic,et al.  Introduction to continuum damage mechanics , 1986 .

[8]  Behzad V. Farahani,et al.  Extending a radial point interpolation meshless method to non-local constitutive damage models , 2016 .

[9]  Zdenek P. Bazant,et al.  Imbricate continuum and its variational derivation , 1984 .

[10]  R. M. Natal Jorge,et al.  Analysis of plates and laminates using the natural neighbour radial point interpolation method. , 2008 .

[11]  R. M. Natal Jorge,et al.  Composite laminated plate analysis using the natural radial element method , 2013 .

[12]  Abdel Magid Hamouda,et al.  Nonlocal damage modelling in clay/epoxy nanocomposites using a multiscale approach , 2016, J. Comput. Sci..

[13]  R. M. Natal Jorge,et al.  Analysis of thick plates by the natural radial element method , 2013 .

[14]  J. Altenbach Zienkiewicz, O. C., The Finite Element Method. 3. Edition. London. McGraw‐Hill Book Company (UK) Limited. 1977. XV, 787 S. , 1980 .

[15]  A. Needleman Material rate dependence and mesh sensitivity in localization problems , 1988 .

[16]  Surendra P. Shah,et al.  Softening Response of Plain Concrete in Direct Tension , 1985 .

[17]  Marc Duflot,et al.  Meshless methods: A review and computer implementation aspects , 2008, Math. Comput. Simul..

[18]  E. Aifantis On the Microstructural Origin of Certain Inelastic Models , 1984 .

[19]  J. Z. Zhu,et al.  The finite element method , 1977 .

[20]  Huafeng Liu,et al.  Meshfree Particle Methods , 2004 .

[21]  David V. Phillips,et al.  A simplified isotropic damage model for concrete under bi-axial stress states , 2005 .

[22]  A. Khan,et al.  Elasto-damage Model for High Strength Concrete Subjected to Multiaxial Loading , 2007 .

[23]  Cv Clemens Verhoosel,et al.  Non-Linear Finite Element Analysis of Solids and Structures , 1991 .

[24]  Lars-Erik Lindgren,et al.  Non-local damage models in manufacturing simulations , 2013 .

[25]  James O. Jirsa,et al.  Behavior of concrete under compressive loadings , 1969 .

[26]  R. Borst SIMULATION OF STRAIN LOCALIZATION: A REAPPRAISAL OF THE COSSERAT CONTINUUM , 1991 .

[27]  J. B. Martin,et al.  A progressive damage «continuum» model for granular materials , 1984 .

[28]  Milan Jirásek,et al.  Nonlocal models for damage and fracture: Comparison of approaches , 1998 .

[29]  Behzad V. Farahani,et al.  The Axisymmetric Analysis of Circular Plates Using the Radial Point Interpolation Method , 2015 .

[30]  Jian-Fu Shao,et al.  A coupled elastoplastic damage model for semi-brittle materials and extension to unsaturated conditions , 2006 .

[31]  A. Cemal Eringen,et al.  A unified theory of thermomechanical materials , 1966 .

[32]  Ioannis Vardoulakis,et al.  A gradient flow theory of plasticity for granular materials , 1991 .

[33]  A. Khoei,et al.  X-FEM modeling of dynamic ductile fracture problems with a nonlocal damage-viscoplasticity model , 2015 .

[34]  Miguel Cervera,et al.  A RATE-DEPENDENT ISOTROPIC DAMAGE MODEL FOR THE SEISMIC ANALYSIS OF CONCRETE DAMS , 1996 .

[35]  Numerical Modeling of Wave Propagation using RBF-based Meshless Method , 2013 .

[36]  J. Oliver,et al.  A strain-based plastic viscous-damage model for massive concrete structures , 1998 .

[37]  Wei He,et al.  A thermodynamically consistent nonlocal damage model for concrete materials with unilateral effects , 2015 .

[38]  Dusan Krajcinovic,et al.  The Continuous Damage Theory of Brittle Materials, Part 1: General Theory , 1981 .

[39]  Rui Faria,et al.  Seismic evaluation of concrete dams via continuum damage models , 1995 .

[40]  Ziad N. Taqieddin,et al.  Elastic Plastic and Damage Model for Concrete Materials : Part I - Theoretical Formulation , 2009 .

[41]  Dusan Krajcinovic,et al.  Constitutive Equations for Damaging Materials , 1983 .

[42]  Guirong Liu,et al.  On the optimal shape parameters of radial basis functions used for 2-D meshless methods , 2002 .

[43]  Pierre Léger,et al.  A combined XFEM–damage mechanics approach for concrete crack propagation , 2015 .

[44]  Z. Bažant,et al.  Nonlocal damage theory , 1987 .

[45]  Jorge Belinha,et al.  Meshless Methods in Biomechanics: Bone Tissue Remodelling Analysis , 2014 .

[46]  Gregory L. Fenves,et al.  A return-mapping algorithm for plastic-damage models: 3-D and plane stress formulation , 2001 .

[47]  R. Jorge,et al.  Analysis of 3D solids using the natural neighbour radial point interpolation method , 2007 .

[48]  Rui Faria,et al.  An energy release rate-based plastic-damage model for concrete , 2006 .

[49]  Kurt H. Gerstle,et al.  Behavior of Concrete Under Biaxial Stresses , 1969 .

[50]  Wei He,et al.  A 2D total strain based constitutive model for predicting the behaviors of concrete structures , 2006 .

[51]  G. E. Warren,et al.  Fracture energy for three-point-bend tests on single-edge-notched beams , 1988 .

[52]  J. C. Simo,et al.  Strain- and stress-based continuum damage models—I. Formulation , 1987 .

[53]  Zhen Chen,et al.  One-Dimensional Softening With Localization , 1986 .

[54]  Guirong Liu,et al.  A point interpolation meshless method based on radial basis functions , 2002 .

[55]  Behzad V. Farahani The radial point interpolation meshless method extended to axisymmetric plates and non-linear continuum damage mechanics , 2015 .

[56]  Y. Labadi,et al.  Numerical Simulation of Brittle Damage in Concrete Specimens , 2005 .