A SiGe BiCMOS W-Band Single-Chip Frequency Extension Module for VNAs

This article reports the design and characterization of a W-band frequency extension module, implemented in a 0.13- $\mu \text{m}$ SiGe BiCMOS technology, for the vector network analyzers (VNAs). The frequency extension module has a dynamic range of about 110 dB, for an IF resolution bandwidth of 10 Hz, with an output power that varies between −4.25 and −0.3 dBm over the W-band. It has an input-referred 1-dB compression point of about 1.9 dBm. The directivity of the frequency extension module is better than 10 dB along the entire W-band, and its maximum value is approximately 23 dB at around 75.5 GHz. The total chip area is about 5.9 mm2. To the best of authors’ knowledge, this article is the first demonstration of a single-chip frequency extension module in a silicon-based semiconductor technology.

[1]  T. Roberts,et al.  A compact, tethered E-band VNA reflectometer , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).

[2]  Robert G. Meyer,et al.  Monolithic RF active mixer design , 1999 .

[3]  Lei Zhou,et al.  A W-band CMOS Receiver Chipset for Millimeter-Wave Radiometer Systems , 2011, IEEE Journal of Solid-State Circuits.

[4]  David M. Bloom,et al.  100 GHz active electronic probe for on-wafer S-parameter measurements , 1989 .

[5]  Songcheol Hong,et al.  A W-Band High-Efficiency CMOS Differential Current-Reused Frequency Doubler , 2015, IEEE Microwave and Wireless Components Letters.

[6]  Gabriel M. Rebeiz,et al.  High-power high-efficiency SiGe Ku- and Ka-band balanced frequency doublers , 2005, IEEE Transactions on Microwave Theory and Techniques.

[7]  S.K. Reynolds,et al.  77 and 94-GHz Downconversion Mixers in SiGe BiCMOS , 2006, 2006 IEEE Asian Solid-State Circuits Conference.

[8]  Le Ye,et al.  A CMOS W-band ×4 frequency multiplier with cascading push-pull frequency doublers , 2012, 2012 Asia Pacific Microwave Conference Proceedings.

[9]  Stephen A. Maas,et al.  Nonlinear Microwave and RF Circuits , 2003 .

[10]  S. Lu,et al.  6.3 mW 94 GHz CMOS Down-Conversion Mixer With 11.6 dB Gain and 54 dB LO-RF Isolation , 2016, IEEE Microwave and Wireless Components Letters.

[11]  Mohamed Ahmed Abou-Khousa,et al.  Novel and Simple High-Frequency Single-Port Vector Network Analyzer , 2010, IEEE Transactions on Instrumentation and Measurement.

[12]  Yo-Sheng Lin,et al.  W-Band CMOS Down-Conversion Mixer Using CMOS-Inverter -Based RF GM Stage for Gain and Linearity Enhancement , 2019, 2019 IEEE Radio and Wireless Symposium (RWS).

[13]  Yo-Sheng Lin,et al.  A W-band down-conversion mixer in 90 nm CMOS with excellent matching and port-to-port isolation for automotive radars , 2014, 2014 11th International Symposium on Wireless Communications Systems (ISWCS).

[14]  G.M. Rebeiz,et al.  A 77 GHz SiGe sub-harmonic balanced mixer , 2005, IEEE Journal of Solid-State Circuits.

[15]  R.M. Weikle,et al.  A millimeter-wave six-port reflectometer based on the sampled-transmission line architecture , 2001, IEEE Microwave and Wireless Components Letters.

[16]  Sorin P. Voinigescu,et al.  An 18-Gb/s, Direct QPSK Modulation SiGe BiCMOS Transceiver for Last Mile Links in the 70–80 GHz Band , 2009, IEEE Journal of Solid-State Circuits.

[17]  Yong-Zhong Xiong,et al.  A W-band direct-conversion I-Q mixer in 0.13μm SiGe BiCMOS technology , 2016, 2016 IEEE MTT-S International Wireless Symposium (IWS).

[18]  B. Heinemann,et al.  Half-Terahertz SiGe BiCMOS technology , 2012, 2012 IEEE 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems.

[19]  K. Elgaid,et al.  Impact of waveguide aperture dimensions and misalignment on the calibrated performance of a network analyzer from 140 to 325GHz , 2009, 2009 73rd ARFTG Microwave Measurement Conference.

[20]  R. A. Hadaway,et al.  Monolithic transformers for silicon RF IC design , 1998, Proceedings of the 1998 Bipolar/BiCMOS Circuits and Technology Meeting (Cat. No.98CH36198).

[21]  Mikko Varonen,et al.  A 100-GHz balanced FET frequency doubler in 65-nm CMOS , 2011, 2011 6th European Microwave Integrated Circuit Conference.

[22]  Charles Oleson,et al.  Millimeter Wave Vector Analysis Calibration and Measurement Problems Caused by Common Waveguide Irregularities , 2000, 56th ARFTG Conference Digest.

[23]  Xin Yang,et al.  A novel W-band bottom-LO-configured sub-harmonic mixer IC in 130-nm SiGe BiCMOS , 2015, 2015 10th European Microwave Integrated Circuits Conference (EuMIC).

[24]  Dietmar Kissinger,et al.  Single- and Dual-Port 50-100-GHz Integrated Vector Network Analyzers With On-Chip Dielectric Sensors , 2014, IEEE Transactions on Microwave Theory and Techniques.

[25]  Brian Floyd,et al.  A 76- to 81-GHz transceiver chipset for long-range and short-range automotive radar , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[26]  Mark J. W. Rodwell,et al.  Full two-port on-wafer vector network analysis to 120 GHz using active probes , 1993, 1993 IEEE MTT-S International Microwave Symposium Digest.

[27]  James Hoffman,et al.  Silicon Millimeter-Wave, Terahertz, and High-Speed Fiber-Optic Device and Benchmark Circuit Scaling Through the 2030 ITRS Horizon , 2017, Proceedings of the IEEE.

[28]  Gabriel M. Rebeiz,et al.  A 70–110 GHz single-chip SiGe reflectometer with integrated local oscillator quadrupler , 2017, 2017 IEEE MTT-S International Microwave Symposium (IMS).

[29]  Mark J. W. Rodwell,et al.  Active probes for network analysis within 70-230 GHz , 1999 .