Venus upper atmosphere revealed by a GCM: II. Model validation with temperature and density measurements

[1]  G. Schubert,et al.  GENERAL CIRCULATION AND THE DYNAMICAL STATE OF THE VENUS ATMOSPHERE , 2022, Venus.

[2]  Ronald G. Prinn,et al.  COMPOSITION OF THE VENUS ATMOSPHERE , 2022, Venus.

[3]  G. Schubert,et al.  Venus’ upper atmosphere revealed by a GCM: I. Structure and variability of the circulation , 2021 .

[4]  Masaru Yamamoto,et al.  Atmospheric response to high-resolution topographical and radiative forcings in a general circulation model of Venus: Time-mean structures of waves and variances , 2020, Icarus.

[5]  D. Lawrence,et al.  Chemically distinct regions of Venus’s atmosphere revealed by measured N2 concentrations , 2020 .

[6]  J. Schofield,et al.  Impact of Gravity Waves on the Middle Atmosphere of Mars: A Non‐Orographic Gravity Wave Parameterization Based on Global Climate Modeling and MCS Observations , 2020, Journal of Geophysical Research: Planets.

[7]  Y. Takahashi,et al.  Planetary‐Scale Variations in Winds and UV Brightness at the Venusian Cloud Top: Periodicity and Temporal Evolution , 2019, Journal of Geophysical Research: Planets.

[8]  Masaru Yamamoto Equatorial Kelvin-like waves on slowly rotating and/or small-sized spheres: Application to Venus and Titan , 2019, Icarus.

[9]  S. Lebonnois,et al.  Latitudinal variation of clouds’ structure responsible for Venus’ cold collar , 2018, Icarus.

[10]  T. Navarro,et al.  Author Correction: Atmospheric mountain wave generation on Venus and its influence on the solid planet’s rotation rate , 2018, Nature Geoscience.

[11]  S. Lebonnois,et al.  Three‐Dimensional Turbulence‐Resolving Modeling of the Venusian Cloud Layer and Induced Gravity Waves: Inclusion of Complete Radiative Transfer and Wind Shear , 2018, Journal of Geophysical Research: Planets.

[12]  A. Vandaele,et al.  Long term evolution of temperature in the venus upper atmosphere at the evening and morning terminators , 2018 .

[13]  N. Hirata,et al.  Performance of Akatsuki/IR2 in Venus orbit: the first year , 2017, Earth, Planets and Space.

[14]  P. Drossart,et al.  Aeronomy of the Venus Upper Atmosphere , 2017 .

[15]  M. Taguchi,et al.  Absolute calibration of brightness temperature of the Venus disk observed by the Longwave Infrared Camera onboard Akatsuki , 2017, Earth, Planets and Space.

[16]  F. Lott,et al.  Thermal structure of the upper atmosphere of Venus simulated by a ground-to-thermosphere GCM , 2017 .

[17]  R. Clancy,et al.  The thermal structure of the Venus atmosphere: Intercomparison of Venus Express and ground based observations of vertical temperature and density profiles , 2017 .

[18]  Gabriella Gilli,et al.  Wave analysis in the atmosphere of Venus below 100-km altitude, simulated by the LMD Venus GCM , 2016 .

[19]  P. Read,et al.  Exploring the Venus global super-rotation using a comprehensive general circulation model , 2016, 1609.06549.

[20]  A. Vandaele,et al.  Multilayer modeling of the aureole photometry during the Venus transit: comparison between SDO/HMI and VEx/SOIR data , 2016, 1608.08544.

[21]  S. Bruinsma,et al.  In situ observations of waves in Venus’s polar lower thermosphere with Venus Express aerobraking , 2016, Nature Physics.

[22]  A. Vandaele,et al.  Carbon monoxide observed in Venus’ atmosphere with SOIR/VEx , 2016 .

[23]  T. Imamura,et al.  The puzzling Venusian polar atmospheric structure reproduced by a general circulation model , 2016, Nature Communications.

[24]  R. Haus,et al.  Radiative heating and cooling in the middle and lower atmosphere of Venus and responses to atmospheric and spectroscopic parameter variations , 2015 .

[25]  Ann Carine Vandaele,et al.  Update of the Venus density and temperature profiles at high altitude measured by SOIR on board Venus Express , 2015 .

[26]  Anna Fedorova,et al.  Thermal structure of Venus nightside upper atmosphere measured by stellar occultations with SPICAV/Venus Express , 2015 .

[27]  T. Encrenaz,et al.  Search for horizontal and vertical variations of CO in the day and night side lower mesosphere of Venus from CSHELL/IRTF 4.53μm observations , 2015 .

[28]  A. Vandaele,et al.  Upper atmosphere temperature structure at the Venusian terminators: A comparison of SOIR and VTGCM results , 2015 .

[29]  R. Clancy,et al.  Doppler winds mapped around the lower thermospheric terminator of Venus: 2012 solar transit observations from the James Clerk Maxwell Telescope , 2015 .

[30]  P. Drossart,et al.  Carbon monoxide and temperature in the upper atmosphere of Venus from VIRTIS/Venus Express non-LTE limb measurements , 2015 .

[31]  M. Persson Venus Thermosphere Densities as Revealed by Venus Express Torque and Accelerometer Data , 2015 .

[32]  M. Takagi,et al.  Waves in a Venus general circulation model , 2014 .

[33]  Alessandra Migliorini,et al.  Modeling VIRTIS/VEX O2(a1∆g) nightglow profiles affected by the propagation of gravity waves in the Venus upper mesosphere , 2014 .

[34]  P. Drossart,et al.  Time variations of O2(a1Δ) nightglow spots on the Venus nightside and dynamics of the upper mesosphere , 2014 .

[35]  P. Drossart,et al.  Latitudinal structure of the Venus O2 infrared airglow: A signature of small-scale dynamical processes in the upper atmosphere , 2014 .

[36]  Giuseppe Piccioni,et al.  The Venus nighttime atmosphere as observed by the VIRTIS‐M instrument. Average fields from the complete infrared data set , 2014 .

[37]  W. Markiewicz,et al.  High latitude gravity waves at the Venus cloud tops as observed by the Venus Monitoring Camera on board Venus Express , 2014 .

[38]  David Kappel,et al.  Self-consistent retrieval of temperature profiles and cloud structure in the northern hemisphere of Venus using VIRTIS/VEX and PMV/VENERA-15 radiation measurements , 2013 .

[39]  Y. Kasaba,et al.  Effects of gravity waves on the day‐night difference of the general circulation in the Venusian lower thermosphere , 2013 .

[40]  F. Lott,et al.  A stochastic parameterization of the gravity waves due to convection and its impact on the equatorial stratosphere , 2013 .

[41]  M. Alexander,et al.  Incorporation of a gravity wave momentum deposition parameterization into the Venus Thermosphere General Circulation Model (VTGCM) , 2012 .

[42]  Stephen W. Bougher,et al.  Dayside thermal structure of Venus' upper atmosphere characterized by a global model , 2012 .

[43]  Ann Carine Vandaele,et al.  Densities and temperatures in the Venus mesosphere and lower thermosphere retrieved from SOIR on board Venus Express: Carbon dioxide measurements at the Venus terminator , 2012 .

[44]  François Lott,et al.  A stochastic parameterization of non‐orographic gravity waves: Formalism and impact on the equatorial stratosphere , 2012 .

[45]  M. Gurwell,et al.  Wind mapping in Venus’ upper mesosphere with the IRAM-Plateau de Bure interferometer , 2012, 1202.5279.

[46]  P. Drossart,et al.  Atomic oxygen on the Venus nightside: Global distribution deduced from airglow mapping , 2012 .

[47]  R. Clancy,et al.  Thermal structure and CO distribution for the Venus mesosphere/lower thermosphere: 2001–2009 inferior conjunction sub-millimeter CO absorption line observations , 2012 .

[48]  P. Drossart,et al.  Investigation of air temperature on the nightside of Venus derived from VIRTIS-H on board Venus-Express , 2012 .

[49]  Giuseppe Piccioni,et al.  Vertical structure of the Venus cloud top from the VeRa and VIRTIS observations onboard Venus Express , 2012 .

[50]  J. Pasachoff,et al.  Sunlight refraction in the mesosphere of Venus during the transit on June 8th, 2004 , 2011, 1112.3136.

[51]  V. Krasnopolsky,et al.  A photochemical model for the Venus atmosphere at 47–112 km , 2011 .

[52]  J. Gérard,et al.  Understanding the variability of nightside temperatures, NO UV and O2 IR nightglow emissions in the Venus upper atmosphere , 2011 .

[53]  Eddy Neefs,et al.  Densities and temperatures in the Venus mesosphere and lower thermosphere retrieved from SOIR on board Venus Express: Retrieval technique , 2010 .

[54]  P. Drossart,et al.  Thermal structure of Venusian nighttime mesosphere as observed by VIRTIS‐Venus Express , 2010 .

[55]  Frédéric Hourdin,et al.  Superrotation of Venus' atmosphere analyzed with a full general circulation model , 2010 .

[56]  Giuseppe Piccioni,et al.  Thermal zonal winds in the Venus mesosphere from the Venus Express temperature soundings , 2010 .

[57]  M. Pätzold,et al.  Structure of the Venus neutral atmosphere as observed by the Radio Science experiment VeRa on Venus Express , 2009 .

[58]  F. Taylor,et al.  Climate evolution of Venus , 2009 .

[59]  Giuseppe Piccioni,et al.  Gravity waves in the upper atmosphere of Venus revealed by CO2 nonlocal thermodynamic equilibrium emissions , 2009 .

[60]  P. Drossart,et al.  Altimetry of the Venus cloud tops from the Venus Express observations , 2009 .

[61]  D. Crisp,et al.  The temperature of the Venus mesosphere from O2 (aΔg1) airglow observations , 2008 .

[62]  E. Lellouch,et al.  Monitoring Venus’ mesospheric winds in support of Venus Express: IRAM 30-m and APEX observations , 2008 .

[63]  P. Hartogh,et al.  Mesospheric vertical thermal structure and winds on Venus from HHSMT CO spectral-line observations , 2008, 0809.2743.

[64]  Y. Kasaba,et al.  Distributions of the Venus 1.27-μm O2 airglow and rotational temperature , 2008 .

[65]  R. Clancy,et al.  Venus upper atmospheric CO, temperature, and winds across the afternoon/evening terminator from June 2007 JCMT sub-millimeter line observations , 2008 .

[66]  R. Schieder,et al.  Venus upper atmosphere winds from ground-based heterodyne spectroscopy of CO2 at 10μm wavelength , 2008 .

[67]  Giuseppe Piccioni,et al.  Characterization of mesoscale gravity waves in the upper and lower clouds of Venus from VEX‐VIRTIS images , 2008 .

[68]  Giuseppe Piccioni,et al.  A latitudinal survey of CO, OCS, H2O, and SO2 in the lower atmosphere of Venus: Spectroscopic studies using VIRTIS‐H , 2008 .

[69]  Giuseppe Piccioni,et al.  Spatial variability of carbon monoxide in Venus' mesosphere from Venus Express/Visible and Infrared Thermal Imaging Spectrometer measurements , 2008 .

[70]  Giuseppe Piccioni,et al.  Morphology and dynamics of Venus oxygen airglow from Venus Express/Visible and Infrared Thermal Imaging Spectrometer observations , 2008 .

[71]  Giuseppe Piccioni,et al.  Tropospheric carbon monoxide concentrations and variability on Venus from Venus Express/VIRTIS-M observations , 2008 .

[72]  A. Pavelyev,et al.  Detection of layering in the upper cloud layer of Venus northern polar atmosphere observed from radio occultation data , 2008 .

[73]  S. Erard,et al.  A dynamic upper atmosphere of Venus as revealed by VIRTIS on Venus Express , 2007, Nature.

[74]  E. Lellouch,et al.  New wind measurements in Venus’ lower mesosphere from visible spectroscopy , 2007 .

[75]  M. Takagi,et al.  Effects of thermal tides on the Venus atmospheric superrotation , 2007 .

[76]  Masaaki Takahashi,et al.  Superrotation Maintained by Meridional Circulation and Waves in a Venus-Like AGCM , 2006 .

[77]  David Crisp,et al.  The composition of the atmosphere of Venus below 100 km altitude: An overview , 2006 .

[78]  V. Formisano,et al.  Exploration of Venus with the Venera-15 IR Fourier spectrometer and the Venus Express planetary Fourier spectrometer , 2006 .

[79]  S. Boughera,et al.  Dynamics of the Venus upper atmosphere : Outstanding problems and new constraints expected from Venus Express , 2006 .

[80]  D. Edwards,et al.  Non-LTE Infrared Emissions of CO2 in the Atmosphere of Venus , 2000 .

[81]  David Crisp,et al.  Ground‐based near‐infrared observations of the Venus nightside: 1.27‐μm O2(a 1Δ g ) airglow from the upper atmosphere , 1996 .

[82]  D. Muhleman,et al.  Observations of the CO bulge on Venus and implications for mesospheric winds , 1995 .

[83]  F. Taylor Carbon monoxide in the deep atmosphere of Venus , 1995 .

[84]  G. Leonard Tyler,et al.  Radio Occultation Studies of the Venus Atmosphere with the Magellan Spacecraft: 1. Experimental Description and Performance , 1994 .

[85]  S. Solomon,et al.  Local time asymmetries in the Venus thermosphere , 1992 .

[86]  J. Jenkins,et al.  Radio Occultation Studies of the Venus Atmosphere with the Magellan Spacecraft: 2. Results from the October 1991 Experiments , 1994 .

[87]  Duane O. Muhleman,et al.  Long-term (1979–1990) changes in the thermal, dynamical, and compositional structure of the Venus Mesosphere as inferred from microwave spectral line observations of 12CO, 13CO, and C18O , 1991 .

[88]  T. Encrenaz,et al.  Observations of the J = 1−0 CO lines in the Mars atmosphere: Radiodetection of 13CO and monitoring of 12CO , 1989 .

[89]  J. Maillard,et al.  Detection of CO infrared emission lines in spectra of Venus , 1988 .

[90]  D. Crisp Radiative forcing of the Venus mesosphere: I. Solar fluxes and heating rates , 1986 .

[91]  R. Dickinson,et al.  Models of Venus neutral upper atmosphere: Structure and composition , 1985 .

[92]  Henry E. Revercomb,et al.  Models of the structure of the atmosphere of Venus from the surface to 100 kilometers altitude , 1985 .

[93]  A. Kliore Recent results on the Venus atmosphere from pioneer Venus radio occultations , 1985 .

[94]  Wayne T. Kasprzak,et al.  Global empirical model of the Venus thermosphere , 1983 .

[95]  R. Lindzen Turbulence and stress owing to gravity wave and tidal breakdown , 1981 .