Introducing Multimedia Information Retrieval to libraries

The paper aims to introduce libraries to the view that operating within the terms of traditional Information Retrieval (IR), only through textual language, is limitative, and that considering broader criteria, as those of Multimedia Information Retrieval (MIR), is necessary. The paper stresses the story of MIR fundamental principles, from early years of questioning on documentation to today’s theories on semantic means. New issues for a LIS methodology of processing and searching multimedia documents are theoretically argued, introducing MIR as a holistic whole composed by content-based and semantic information retrieval methodologies. MIR offers a better information searching way: every kind of digital document can be analyzed and retrieved through the elements of language appropriate to its own nature. MIR approach directly handles the concrete content of documents, also considering semantic aspects. Paper conclusions remark the organic integration of the revolutionary contentual conception of information processing with an improved semantics conception, gathering and composing advantages of both systems for accessing to information.

[1]  Marc Leman,et al.  Content-Based Music Information Retrieval: Current Directions and Future Challenges , 2008, Proceedings of the IEEE.

[2]  Peter G. B. Enser Pictorial Information Retrieval (Progress in Documentation) , 1995 .

[3]  Santanu Chaudhury,et al.  Acquisition of multimedia ontology: an application in preservation of cultural heritage , 2012, International Journal of Multimedia Information Retrieval.

[4]  Ankush Mittal An Overview of Multimedia Content-Based Retrieval Strategies , 2006, Informatica.

[5]  A. E. Cawkell Indexing collections of electronic images : a review , 1993 .

[6]  Bart Thomee,et al.  Interactive search in image retrieval: a survey , 2012, International Journal of Multimedia Information Retrieval.

[7]  Alberto Del Bimbo,et al.  Visual information retrieval , 1999 .

[8]  Joan E. Beaudoin Content‐based image retrieval methods and professional image users , 2016, J. Assoc. Inf. Sci. Technol..

[9]  Mark T. Maybury Multimedia Information Extraction: History and State of the Art , 2011 .

[10]  Béla Lóránt Kovács,et al.  New search method in digital library image collections: A theoretical inquiry , 2014, J. Libr. Inf. Sci..

[11]  Virginia A. Lingle,et al.  Indexing and Abstracting in Theory and Practice , 2005 .

[12]  Michael K. Buckland,et al.  Information retrieval of more than text , 1991, J. Am. Soc. Inf. Sci..

[13]  Jonathon S. Hare,et al.  Mind the gap: another look at the problem of the semantic gap in image retrieval , 2006, Electronic Imaging.

[14]  Marieke Guy,et al.  Folksonomies: Tidying Up Tags? , 2006, D Lib Mag..

[15]  Sagarmay Deb Multimedia Systems and Content-Based Image Retrieval , 2003 .

[16]  John P. Eakins,et al.  Automatic image content retrieval - are we getting anywhere? , 2002 .

[17]  Sharon Q. Yang Tagging for Subject Access: A Glimpse into Current Practice by Vendors, Libraries, and Users. , 2012 .

[18]  Alan Hanjalic,et al.  New grand challenge for multimedia information retrieval: bridging the utility gap , 2012, International Journal of Multimedia Information Retrieval.

[19]  Atsuo Yoshitaka,et al.  A Survey on Content-Based Retrieval for Multimedia Databases , 1999, IEEE Trans. Knowl. Data Eng..

[20]  Michael S. Lew,et al.  Very large scale nearest neighbor search: ideas, strategies and challenges , 2013, International Journal of Multimedia Information Retrieval.

[21]  Gabriela Csurka,et al.  Unsupervised Visual and Textual Information Fusion in CBMIR Using Graph-Based Methods , 2015, TOIS.

[22]  Roberto Raieli Multimedia information retrieval : theory and techniques , 2013 .

[23]  William I. Grosky,et al.  Managing multimedia information in database systems , 1997, CACM.

[25]  Elaine Svenonius Access to nonbook materials: the limits of subject indexing for visual and aural languages , 1994 .

[26]  Chong-Wah Ngo,et al.  On the use of commonsense ontology for multimedia event recounting , 2015, International Journal of Multimedia Information Retrieval.

[27]  Paul H. Lewis,et al.  Surveying the Reality of Semantic Image Retrieval , 2005, VISUAL.

[28]  Lei Xu,et al.  Semantic Description of Cultural Digital Images: Using a Hierarchical Model and Controlled Vocabulary , 2015, D Lib Mag..

[29]  Elaine Ménard,et al.  Digital image access: an exploration of the best practices of online resources , 2014, Libr. Hi Tech.

[30]  Mubarak Shah,et al.  High-level event recognition in unconstrained videos , 2013, International Journal of Multimedia Information Retrieval.

[31]  Christoph Meinel,et al.  E-Librarian Service - User-Friendly Semantic Search in Digital Libraries , 2011, X.media.publishing.

[32]  Nicu Sebe,et al.  Content-based multimedia information retrieval: State of the art and challenges , 2006, TOMCCAP.

[33]  Colin C. Venters,et al.  Mind the gap: content-based image retrieval and the user interface , 2004 .

[34]  Peter G. B. Enser,et al.  Towards a Comprehensive Survey of the Semantic Gap in Visual Image Retrieval , 2003, CIVR.

[35]  Hamid Abrishami Moghaddam,et al.  An incremental evolutionary method for optimizing dynamic image retrieval systems , 2010, 2010 6th Iranian Conference on Machine Vision and Image Processing.

[36]  Peter G. B. Enser,et al.  Visual image retrieval: seeking the alliance of concept-based and content-based paradigms , 2000, J. Inf. Sci..

[37]  Toshikazu Kato,et al.  Database architecture for content-based image retrieval , 1992, Electronic Imaging.

[38]  Deyu Meng,et al.  Text-to-video: a semantic search engine for internet videos , 2015, International Journal of Multimedia Information Retrieval.