Robust Dynamic Hamiltonian Engineering of Many-Body Spin Systems

We introduce a new framework for the robust control of quantum dynamics of strongly interacting many-body systems. Our approach involves the design of periodic global control pulse sequences to engineer desired target Hamiltonians that are robust against disorder, unwanted interactions and pulse imperfections. It utilizes a matrix representation of the Hamiltonian engineering protocol based on time-domain transformations of the Pauli spin operator along the quantization axis. This representation allows us to derive a concise set of algebraic conditions on the sequence matrix to engineer robust target Hamiltonians, enabling the simple yet systematic design of pulse sequences. We show that this approach provides a streamlined way to (i) treat any secular many-body Hamiltonian and engineer it into a desired form, (ii) target dominant disorder and interaction characteristics of a given system, (iii) achieve robustness against imperfections, and (iv) provide optimal sequence length within given constraints. Using this systematic approach, we develop novel sets of pulse sequences for the protection of quantum coherence, optimal quantum sensing and quantum simulation. Finally, we experimentally demonstrate the robust operation of these sequences in a dense ensemble of nitrogen-vacancy centers in diamond.

[1]  Rufus L. Cone,et al.  Rare-earth-doped materials for applications in quantum information storage and signal processing , 2011 .

[2]  S. Sondhi,et al.  Absolute stability and spatiotemporal long-range order in Floquet systems , 2016, 1605.00639.

[3]  Liang Jiang,et al.  Majorana fermions in equilibrium and in driven cold-atom quantum wires. , 2011, Physical review letters.

[4]  François Huveneers,et al.  A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems , 2015, 1509.05386.

[5]  D. Lidar,et al.  Fault-tolerant quantum dynamical decoupling , 2004, 2005 Quantum Electronics and Laser Science Conference.

[6]  W. Rhim,et al.  Analysis of multiple pulse NMR in solids. II , 1973 .

[7]  C. Rettner,et al.  Multipulse double-quantum magnetometry with near-surface nitrogen-vacancy centers. , 2014, Physical review letters.

[8]  M. Lukin,et al.  Critical Time Crystals in Dipolar Systems. , 2017, Physical review letters.

[9]  M. Lukin,et al.  Enhanced solid-state multispin metrology using dynamical decoupling , 2012, 1201.5686.

[10]  L. D'alessio,et al.  Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering , 2014, 1407.4803.

[11]  D. Rugar,et al.  Spurious harmonic response of multipulse quantum sensing sequences , 2014, 1412.5768.

[12]  T. Oka,et al.  Floquet Engineering of Quantum Materials , 2018, Annual Review of Condensed Matter Physics.

[13]  S. Meiboom,et al.  Modified Spin‐Echo Method for Measuring Nuclear Relaxation Times , 1958 .

[14]  Soonwon Choi,et al.  Dynamical Engineering of Interactions in Qudit Ensembles. , 2017, Physical review letters.

[15]  D. Cory,et al.  Time-suspension multiple-pulse sequences: applications to solid-state imaging , 1990 .

[16]  D. Budker,et al.  Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond , 2015, 1505.00636.

[17]  M. Lukin,et al.  Probing Quantum Thermalization of a Disordered Dipolar Spin Ensemble with Discrete Time-Crystalline Order. , 2018, Physical review letters.

[18]  C. Degen,et al.  Scanning magnetic field microscope with a diamond single-spin sensor , 2008, 0805.1215.

[19]  Stefan Zohren,et al.  Circuit design for multi-body interactions in superconducting quantum annealing systems with applications to a scalable architecture , 2016, 1603.09521.

[20]  Hengyun Zhou,et al.  Observation of discrete time-crystalline order in a disordered dipolar many-body system , 2016, Nature.

[21]  Michael J. Biercuk,et al.  Optimized dynamical decoupling in a model quantum memory , 2008, Nature.

[22]  W. De Roeck,et al.  Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems , 2015, 1510.03405.

[23]  Walter I. Goldburg,et al.  Nuclear-Magnetic-Resonance Line Narrowing by a Rotating rf Field , 1965 .

[24]  Dieter Suter,et al.  Localization-delocalization transition in the dynamics of dipolar-coupled nuclear spins , 2015, Science.

[25]  Tony E. Lee Floquet engineering from long-range to short-range interactions , 2016, 1608.01326.

[26]  S. Barrett,et al.  Generating unexpected spin echoes in dipolar solids with pi pulses. , 2007, Physical review letters.

[27]  Michael J. Biercuk,et al.  Programmable quantum simulation by dynamic Hamiltonian engineering , 2013, 1309.6736.

[28]  Roderich Moessner,et al.  Phase Structure of Driven Quantum Systems. , 2015, Physical review letters.

[29]  K. Takegoshi,et al.  A “magic echo” pulse sequence for the high-resolution NMR spectra of abundant spins in solids , 1985 .

[30]  Lorenza Viola,et al.  General transfer-function approach to noise filtering in open-loop quantum control. , 2014, Physical review letters.

[31]  Paola Cappellaro,et al.  Quantum simulation via filtered Hamiltonian engineering: application to perfect quantum transport in spin networks. , 2012, Physical review letters.

[32]  U. Haeberlen,et al.  Approach to High-Resolution nmr in Solids , 1968 .

[33]  P. Maurer,et al.  Critical Thermalization of a Disordered Dipolar Spin System in Diamond. , 2016, Physical review letters.

[34]  Lior Horesh,et al.  Hamiltonian engineering with constrained optimization for quantum sensing and control , 2018, New Journal of Physics.

[35]  S. Shikata,et al.  High-sensitivity magnetometry based on quantum beats in diamond nitrogen-vacancy centers. , 2012, Physical review letters.

[36]  David G. Cory,et al.  A new multiple-pulse cycle for homonuclear dipolar decoupling , 1991 .

[37]  Dimitris Sakellariou,et al.  Homonuclear dipolar decoupling in solid-state NMR using continuous phase modulation , 2000 .

[38]  R. Blum,et al.  Observation of Discrete-Time-Crystal Signatures in an Ordered Dipolar Many-Body System. , 2018, Physical review letters.

[39]  R. Moessner,et al.  Resonating valence bond phase in the triangular lattice quantum dimer model. , 2001, Physical review letters.

[40]  R. Hanson,et al.  Single-spin magnetometry with multipulse sensing sequences. , 2010, Physical review letters.

[41]  Dieter Suter,et al.  Colloquium : Protecting quantum information against environmental noise , 2016 .

[42]  M. Lukin,et al.  Probing many-body dynamics on a 51-atom quantum simulator , 2017, Nature.

[43]  F. Wilczek,et al.  A Chern-Simons effective field theory for the Pfaffian quantum Hall state , 1997, cond-mat/9711087.

[44]  K. Sacha,et al.  Time crystals: a review , 2017, Reports on progress in physics. Physical Society.

[45]  Morgan W. Mitchell,et al.  Colloquium : Quantum limits to the energy resolution of magnetic field sensors , 2019, Reviews of Modern Physics.

[46]  R Hanson,et al.  Universal Dynamical Decoupling of a Single Solid-State Spin from a Spin Bath , 2010, Science.

[47]  Gregory W. Moore,et al.  Nonabelions in the fractional quantum Hall effect , 1991 .

[48]  C. Rienstra,et al.  Fivefold symmetric homonuclear dipolar recoupling in rotating solids: Application to double quantum spectroscopy , 1999 .

[49]  E. A. Gere,et al.  Electron Spin Resonance Experiments on Donors in Silicon. II. Electron Spin Relaxation Effects , 1959 .

[50]  N. Nielsen,et al.  Efficient dipolar recoupling in the NMR of rotating solids. A sevenfold symmetric radiofrequency pulse sequence , 1995 .

[51]  Daniel A. Lidar,et al.  Near-optimal dynamical decoupling of a qubit. , 2009, Physical review letters.

[52]  David G. Cory,et al.  Multiple-Pulse Methods Of H-1-Nmr Imaging Of Solids - 2nd-Averaging , 1990 .

[53]  T. S. Mahesh,et al.  Temporal Order in Periodically Driven Spins in Star-Shaped Clusters. , 2017, Physical review letters.

[54]  L. Hollenberg,et al.  Nonvanishing effect of detuning errors in dynamical-decoupling-based quantum sensing experiments , 2018, Physical Review A.

[55]  A. Eckardt,et al.  Colloquium: Atomic quantum gases in periodically driven optical lattices , 2016, 1606.08041.

[56]  L. Vandersypen,et al.  NMR techniques for quantum control and computation , 2004, quant-ph/0404064.

[57]  Jun Ye,et al.  Observation of dipolar spin-exchange interactions with lattice-confined polar molecules , 2013, Nature.

[58]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[59]  A. J. Shaka,et al.  An improved sequence for broadband decoupling: WALTZ-16 , 1983 .

[60]  L. Viola,et al.  Dynamical generation of Floquet Majorana flat bands in s-wave superconductors , 2014, 1412.2639.

[61]  M. L. Wall,et al.  Quantum spin dynamics and entanglement generation with hundreds of trapped ions , 2015, Science.

[62]  Debbie W. Leung,et al.  Quantum data hiding , 2002, IEEE Trans. Inf. Theory.

[63]  Immanuel Bloch,et al.  Colloquium : Many-body localization, thermalization, and entanglement , 2018, Reviews of Modern Physics.

[64]  E. Purcell,et al.  Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments , 1954 .

[65]  U. Haeberlen,et al.  Coherent Averaging Effects in Magnetic Resonance , 1968 .

[66]  Dieter Suter,et al.  Localization-delocalization transition in the dynamics of dipolar-coupled nuclear spins , 2014, Science.

[67]  N. Yao,et al.  Discrete Time Crystals: Rigidity, Criticality, and Realizations. , 2016, Physical review letters.

[68]  Jun Ye,et al.  Cold molecules: Progress in quantum engineering of chemistry and quantum matter , 2017, Science.

[69]  B. Collins,et al.  Integration with Respect to the Haar Measure on Unitary, Orthogonal and Symplectic Group , 2004, math-ph/0402073.

[70]  N. Bar-Gill,et al.  Hamiltonian engineering of general two-body spin-1/2 interactions , 2019, Physical Review Research.

[71]  Tomotaka Kuwahara,et al.  Floquet-Magnus Theory and Generic Transient Dynamics in Periodically Driven Many-Body Quantum Systems , 2015, 1508.05797.

[72]  M. L. Wall,et al.  Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet , 2016, Nature Physics.

[73]  D. Cory,et al.  Robust decoupling techniques to extend quantum coherence in diamond. , 2010, Physical review letters.

[74]  T. Gullion,et al.  New, compensated Carr-Purcell sequences , 1990 .

[75]  M. Heyl Dynamical quantum phase transitions: a review , 2017, Reports on progress in physics. Physical Society.

[76]  Tommaso Calarco,et al.  Optimal control technique for many-body quantum dynamics. , 2010, Physical review letters.

[77]  Barbara M. Terhal,et al.  Noise thresholds for the [4, 2, 2]-concatenated toric code , 2016, Quantum Inf. Comput..

[78]  F. Reinhard,et al.  Quantum sensing , 2016, 1611.02427.

[79]  R. Nandkishore,et al.  Many-Body Localization and Thermalization in Quantum Statistical Mechanics , 2014, 1404.0686.

[80]  Dieter Suter,et al.  Measuring the spectrum of colored noise by dynamical decoupling. , 2011, Physical review letters.

[81]  J. Waugh,et al.  Resonance Offset Effects in Multiple‐Pulse NMR Experiments , 1971 .

[82]  A. J. Shaka,et al.  Iterative schemes for bilinear operators; application to spin decoupling , 1988 .

[83]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[84]  J. Lang,et al.  Dynamical decoupling based quantum sensing: Floquet spectroscopy , 2015, 1502.07960.

[85]  Fedor Jelezko,et al.  Dynamical Decoupling of a single electron spin at room temperature , 2010, 1008.1953.

[86]  M. Biercuk,et al.  Arbitrary quantum control of qubits in the presence of universal noise , 2012, 1211.1163.

[87]  S. Ravets,et al.  Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models , 2016, Nature.

[88]  Kaveh Khodjasteh,et al.  Dynamical Quantum Error Correction of Unitary Operations with Bounded Controls , 2009, 0906.0525.

[89]  M. Plenio,et al.  Randomization of Pulse Phases for Unambiguous and Robust Quantum Sensing. , 2019, Physical review letters.

[90]  Adam D. Bookatz,et al.  Hamiltonian quantum simulation with bounded-strength controls , 2013, New Journal of Physics.

[91]  Andreas Brinkmann,et al.  Symmetry principles for the design of radiofrequency pulse sequences in the nuclear magnetic resonance of rotating solids , 2000 .

[92]  C. Santori,et al.  Quantum Control over Single Spins in Diamond , 2013 .

[93]  R. Schirhagl,et al.  Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. , 2014, Annual review of physical chemistry.

[94]  G. Uhrig Keeping a quantum bit alive by optimized pi-pulse sequences. , 2006, Physical review letters.

[95]  G. Drobny,et al.  Fourier transform multiple quantum nuclear magnetic resonance , 1978 .

[96]  D. Cory,et al.  Noise spectroscopy through dynamical decoupling with a superconducting flux qubit , 2011 .

[97]  Thomas Halfmann,et al.  Arbitrarily Accurate Pulse Sequences for Robust Dynamical Decoupling. , 2016, Physical review letters.

[98]  B. Lanyon,et al.  Quasiparticle engineering and entanglement propagation in a quantum many-body system , 2014, Nature.

[99]  Bela Bauer,et al.  Floquet Time Crystals. , 2016, Physical review letters.

[100]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[101]  C. Ramanathan,et al.  Exploring Localization in Nuclear Spin Chains. , 2016, Physical review letters.

[102]  Leigh M. Norris,et al.  Qubit Noise Spectroscopy for Non-Gaussian Dephasing Environments. , 2015, Physical review letters.

[103]  D. Gross,et al.  Evenly distributed unitaries: On the structure of unitary designs , 2006, quant-ph/0611002.

[104]  S. Lloyd,et al.  Emergent Prethermalization Signatures in Out-of-Time Ordered Correlations. , 2018, Physical review letters.

[105]  Paola Cappellaro,et al.  Quantum correlation in disordered spin systems: Applications to magnetic sensing , 2009, 0904.2642.

[106]  E Solano,et al.  Many-body interactions with tunable-coupling transmon qubits. , 2014, Physical review letters.

[107]  D. Cory Distortions in multiple-pulse solid state NMR imaging: gradient decoupling, time-sequenced second averaging, and over-sampling. , 1996, Solid state nuclear magnetic resonance.

[108]  D. Englund,et al.  Low-control and robust quantum refrigerator and applications with electronic spins in diamond , 2017, 1702.06141.

[109]  Bob B. Buckley,et al.  Room temperature coherent control of defect spin qubits in silicon carbide , 2011, Nature.

[110]  S. A. Lyon,et al.  Electron spin relaxation times of phosphorus donors in silicon , 2003 .

[111]  M. Plenio,et al.  Robust optical polarization of nuclear spin baths using Hamiltonian engineering of nitrogen-vacancy center quantum dynamics , 2018, Science Advances.

[112]  C. Monroe,et al.  Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator , 2017, Nature.

[113]  Christoph Dankert,et al.  Exact and approximate unitary 2-designs and their application to fidelity estimation , 2009 .

[114]  W. Magnus On the exponential solution of differential equations for a linear operator , 1954 .

[115]  Lukas J. Fiderer,et al.  Quantum metrology with quantum-chaotic sensors , 2018, Nature Communications.

[116]  Three-body interactions with cold polar molecules , 2007, cond-mat/0703688.

[117]  Tomotaka Kuwahara,et al.  Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems. , 2015, Physical review letters.

[118]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[119]  M. Rigol,et al.  From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics , 2015, 1509.06411.

[120]  Peter Mansfield,et al.  Symmetrized pulse sequences in high resolution NMR in solids , 1971 .

[121]  David G. Cory,et al.  High-Resolution Nanoscale Solid-State Nuclear Magnetic Resonance Spectroscopy , 2017 .

[122]  Huangjun Zhu Multiqubit Clifford groups are unitary 3-designs , 2015, 1510.02619.

[123]  D. Lucarelli,et al.  Application of optimal band-limited control protocols to quantum noise sensing , 2017, Nature Communications.

[124]  D. Awschalom,et al.  Quantum Spintronics: Engineering and Manipulating Atom-Like Spins in Semiconductors , 2013, Science.

[125]  S. Vega,et al.  High-resolution proton solid-state NMR spectroscopy by phase-modulated Lee–Goldburg experiment , 1999 .

[126]  Lorenza Viola,et al.  Random decoupling schemes for quantum dynamical control and error suppression. , 2005, Physical review letters.

[127]  R. Blatt,et al.  Quantum simulations with trapped ions , 2011, Nature Physics.

[128]  Mikhail D Lukin,et al.  Depolarization Dynamics in a Strongly Interacting Solid-State Spin Ensemble. , 2016, Physical review letters.

[129]  Jun Ye,et al.  Cold and ultracold molecules: science, technology and applications , 2009, 0904.3175.

[130]  Xiao-Gang Wen,et al.  String-net condensation: A physical mechanism for topological phases , 2004, cond-mat/0404617.

[131]  Seth Lloyd,et al.  Pseudo-Random Unitary Operators for Quantum Information Processing , 2003, Science.

[132]  Gil Refael,et al.  Floquet topological insulator in semiconductor quantum wells , 2010, 1008.1792.

[133]  A. Pines,et al.  Multiple‐quantum dynamics in solid state NMR , 1985 .

[134]  Kaveh Khodjasteh,et al.  Automated Synthesis of Dynamically Corrected Quantum Gates , 2012 .

[135]  R. Hanson,et al.  Comparison of dynamical decoupling protocols for a nitrogen-vacancy center in diamond , 2012, 1202.0462.

[136]  M. Plenio,et al.  Robust optical polarization of nuclear spin baths using Hamiltonian engineering of nitrogen-vacancy center quantum dynamics , 2017, Science Advances.

[137]  P. Tokarczuk,et al.  An NMR multiple pulse sequence for the imaging of solids using sinusoidally driven magnetic field gradients , 1989 .

[138]  Dieter Suter,et al.  Robust dynamical decoupling for quantum computing and quantum memory. , 2011, Physical review letters.

[139]  Ultrasensitive diamond magnetometry using optimal dynamic decoupling , 2010, 1003.3699.

[140]  Richard R. Ernst,et al.  Product operator formalism for the description of NMR pulse experiments , 1984 .

[141]  W. Dur,et al.  Standard forms of noisy quantum operations via depolarization , 2005 .

[142]  Paola Cappellaro,et al.  Quantum Metrology with Strongly Interacting Spin Systems , 2019, 1907.10066.

[143]  Raymond G. Beausoleil,et al.  Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications , 2009 .

[144]  Enhanced Resolution in Nanoscale NMR via Quantum Sensing with Pulses of Finite Duration , 2016, 1611.07894.

[145]  Alexander Pines,et al.  Time-Reversal Experiments in Dipolar-Coupled Spin Systems , 1971 .

[146]  Dieter Suter,et al.  Performance comparison of dynamical decoupling sequences for a qubit in a rapidly fluctuating spin-bath , 2010, 1008.1962.

[147]  Kaveh Khodjasteh,et al.  Dynamically error-corrected gates for universal quantum computation. , 2008, Physical review letters.

[148]  Xing Rong,et al.  Preserving electron spin coherence in solids by optimal dynamical decoupling , 2009, Nature.

[149]  R. Walsworth,et al.  Ultralong Dephasing Times in Solid-State Spin Ensembles via Quantum Control , 2018, Physical Review X.