A new A-type granitoid occurrence in southernmost Fennoscandia: geochemistry, age and origin of rapakivi-type quartz monzonite from the Pietkowo IG1 borehole, NE Poland

[1]  M. Whitehouse,et al.  On the origin and evolution of the 1.86–1.76 Ga Mid-Baltic Belt in the western East European Craton , 2021, Precambrian Research.

[2]  S. Elming,et al.  Paleomagnetic studies of rapakivi complexes in the Fennoscandian shield – Implications to the origin of Proterozoic massif-type anorthosite magmatism , 2021, Precambrian Research.

[3]  R. Gyllencreutz,et al.  The Precambrian of Gotland, a key for understanding the Proterozoic evolution in southern Fennoscandia , 2021 .

[4]  I. Williams,et al.  Basement correlation across the southernmost Baltic Sea: Geochemical and geochronological evidence from onshore and offshore deep drill cores, northern Poland , 2021, Precambrian Research.

[5]  J. Wiszniewska,et al.  Advances in geochronology in the Suwałki anorthosite massif and subsequent granite veins, northeastern Poland , 2021 .

[6]  Yue-heng Yang,et al.  Allanite U–Th–Pb geochronology by ion microprobe , 2020 .

[7]  P. Poprawa Geological setting and Ediacaran–Palaeozoic evolution of the western slope of the East European Craton and adjacent regions , 2019, Annales Societatis Geologorum Poloniae.

[8]  T. Andersen,et al.  Zircon as a Proxy for the Magmatic Evolution of Proterozoic Ferroan Granites; the Wiborg Rapakivi Granite Batholith, SE Finland , 2017 .

[9]  Olga Rosowiecka,et al.  A new magnetic anomaly map of Poland and its contribution to the recognition of crystalline basement rocks , 2017 .

[10]  O. Rämö,et al.  Geochronology of the Suomenniemi rapakivi granite complex revisited , 2015 .

[11]  A. Soesoo,et al.  Trans-Baltic Palaeoproterozoic correlations towards the reconstruction of supercontinent Columbia/Nuna , 2015 .

[12]  M. Malinowski,et al.  Transcurrent nature of the Teisseyre–Tornquist Zone in Central Europe: results of the POLCRUST-01 deep reflection seismic profile , 2015, International Journal of Earth Sciences.

[13]  Y. Lahaye,et al.  Age and isotopic fingerprints of some plutonic rocks in the Wiborg rapakivi granite batholith with special reference to the dark wiborgite of the Ristisaari Island. , 2014 .

[14]  H. Martin,et al.  Petrology and geochemistry of rapakivi-type granites from the crystalline basement of NE Poland , 2012 .

[15]  Zhidan Zhao,et al.  Magmatic zircons from I-, S- and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study , 2012 .

[16]  U. Andersson,et al.  Character and origin of variably deformed granitoids in central southern Sweden: implications from geochemistry and Nd isotopes , 2011 .

[17]  M. Zhai,et al.  Nature and origin of the Wenquan granite: Implications for the provenance of Proterozoic A-type granites in the North China craton , 2011 .

[18]  E. Sharkov Middle-proterozoic anorthosite–rapakivi granite complexes: An example of within-plate magmatism in abnormally thick crust: Evidence from the East European Craton , 2010 .

[19]  H. Martin,et al.  THE ORIGIN OF FERROAN-POTASSIC A-TYPE GRANITOIDS: THE CASE OF THE HORNBLENDE-BIOTITE GRANITE SUITE OF THE MESOPROTEROZOIC MAZURY COMPLEX, NORTHEASTERN POLAND , 2010 .

[20]  O. Rämö,et al.  FORMATION AND FRACTIONATION OF HIGH-Al THOLEIITIC MAGMAS IN THE AHVENISTO RAPAKIVI GRANITE – MASSIF-TYPE ANORTHOSITE COMPLEX, SOUTHEASTERN FINLAND , 2010 .

[21]  L. Ashwal THE TEMPORALITY OF ANORTHOSITES , 2010 .

[22]  T. Andersen,et al.  Re-evaluation of Rapakivi Petrogenesis: Source Constraints from the Hf Isotope Composition of Zircon in the Rapakivi Granites and Associated Mafic Rocks of Southern Finland , 2010 .

[23]  I. Williams,et al.  An extension of the Svecofennian orogenic province into NE Poland: Evidence from geochemistry and detrital zircon from Paleoproterozoic paragneisses , 2009 .

[24]  E. Krzemińska,et al.  Granity typu A w kompleksie mazurskim - przyczynek do dyskusji o klasyfikacji granitów , 2009 .

[25]  T. Tiira,et al.  The Moho depth map of the European Plate , 2009 .

[26]  M. Whitehouse,et al.  Significance of ~ 1.5 Ga zircon and monazite ages from charnockites in southern Lithuania and NE Poland ☆ , 2008 .

[27]  B. Bonin A-type granites and related rocks: Evolution of a concept, problems and prospects , 2007 .

[28]  M. Whitehouse,et al.  Evidence for a pulse of 1.45 Ga anorthosite–mangerite–charnockite–granite (AMCG) plutonism in Lithuania: implications for the Mesoproterozoic evolution of the East European Craton , 2007 .

[29]  R. Dall’Agnol,et al.  Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: Implications for classification and petrogenesis of A-type granites , 2007 .

[30]  I. Williams,et al.  Late Paleoproterozoic arc-related granites from the Mazowsze domain, NE Poland , 2007 .

[31]  R. WoNBs Significance of the assemblage titanite * magnetite * quartz in granitic rocks , 2007 .

[32]  E. B. Sal’nikova,et al.  The Žemaičių Naumiestis granitoids: New evidences for Mesoproterozoic magmatism in western Lithuania , 2006 .

[33]  A. Korja,et al.  The Svecofennian orogen: a collage of microcontinents and island arcs , 2006, Geological Society, London, Memoirs.

[34]  M. Grad,et al.  Crustal structure below the Polish Basin: Is it composed of proximal terranes derived from Baltica? , 2005 .

[35]  I. Williams,et al.  A Late Paleoproterozoic (1.80 Ga) subduction‐related mafic igneous suite from Lomza, NE Poland , 2005 .

[36]  J. Morrison,et al.  Ilmenite, magnetite, and peraluminous Mesoproterozoic anorogenic granites of Laurentia and Baltica , 2005 .

[37]  R. Dall’Agnol,et al.  Petrogenesis of the Paleoproterozoic rapakivi A-type granites of the Archean Carajás metallogenic province, Brazil , 2005 .

[38]  R. Korsch,et al.  of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards , 2004 .

[39]  R. Korsch,et al.  TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology , 2003 .

[40]  J. Duchesne,et al.  Ferro-potassic A-type granites and related rocks in NE Poland and S Lithuania: west of the East European Craton , 2003 .

[41]  W. Dörr,et al.  U /Pb and Ar /Ar geochronology of anorogenic granite magmatism of the Mazury complex, NE Poland , 2002 .

[42]  H. Stein,et al.  The north‐eastern Polish anorthosite massifs: petrological, geochemical and isotopic evidence for a crustal derivation , 2002 .

[43]  R. Dall’Agnol,et al.  1.88 Ga Oxidized A‐Type Granites of the Rio Maria Region, Eastern Amazonian Craton, Brazil: Positively Anorogenic! , 2002, The Journal of Geology.

[44]  E. Slaby,et al.  Mantled alkali-feldspar megacrysts from the marginal part of the Karkonosze granitoid massif (SW Poland) , 2002 .

[45]  Calvin G. Barnes,et al.  A Geochemical Classification for Granitic Rocks , 2001 .

[46]  U. Andersson,et al.  Petrogenesis of Mesoproterozoic (Subjotnian) rapakivi complexes of central Sweden: implications from U–Pb zircon ages, Nd, Sr and Pb isotopes , 2001, Transactions of the Royal Society of Edinburgh: Earth Sciences.

[47]  H. M. Rajesh Characterization and origin of a compositionally zoned aluminous A-type granite from South India , 2000, Geological Magazine.

[48]  B. Edwards,et al.  Petrogenesis of the 1·43 Ga Sherman Batholith, SE Wyoming, USA: a Reduced, Rapakivi-type Anorogenic Granite , 1999 .

[49]  R. Dall’Agnol,et al.  An Experimental Study of a Lower Proterozoic A-type Granite from theEastern Amazonian Craton, Brazil , 1999 .

[50]  J. Price,et al.  Experimental study of titanite-fluorite equilibria in the A-type Mount Scott Granite: Implications for assessing F contents of felsic magma , 1999 .

[51]  O. Eklund The origin of rapakivi texture by sub-isothermal decompression , 1999 .

[52]  R. Alviola The Proterozoic Ahvenisto rapakivi granite–massif-type anorthosite complex, southeastern Finland; petrography and U–Pb chronology , 1999 .

[53]  A. Persson Absolute (U–Pb) and relative age determinations of intrusive rocks in the Ragunda rapakivi complex, central Sweden , 1999 .

[54]  J. Liégeois,et al.  The crustal tongue melting model and the origin of massive anorthosites , 1999 .

[55]  R. Dall’Agnol,et al.  Petrology of the anorogenic, oxidised Jamon and Musa granites, Amazonian Craton: implications for the genesis of Proterozoic A-type granites , 1999 .

[56]  A. P. Douce,et al.  What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas , 1999 .

[57]  W. Ridley,et al.  Applications of Microanalytical Techniques to Understanding Mineralizing Processes , 1998 .

[58]  A. P. Douce,et al.  Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids , 1997 .

[59]  B. Frost,et al.  Reduced rapakivi-type granites: The tholeiite connection , 1997 .

[60]  P. Kresten,et al.  The anorogenic Noran intrusion ‐ a Mesoproterozoic rapakivi massif in south‐central Sweden , 1997 .

[61]  U. Andersson The sub‐Jotnian strömsbro granite complex at gävle, Sweden , 1997 .

[62]  A. M. Larin,et al.  Chronology of multiphase emplacement of the Salmi rapakivi granite-anorthosite complex, Baltic Shield: implications for magmatic evolution , 1997 .

[63]  P. King,et al.  Characterization and Origin of Aluminous A-type Granites from the Lachlan Fold Belt, Southeastern Australia , 1997 .

[64]  O. Rämö,et al.  Radiogenic isotopes of the Estonian and Latvian rapakivi granite suites: new data from the concealed Precambrian of the East European Craton , 1996 .

[65]  W. Collins,et al.  Derivation of A-type Granites from a Dehydrated Charnockitic Lower Crust: Evidence from the Chaelundi Complex, Eastern Australia , 1996 .

[66]  O. Rämö,et al.  One hundred years of rapakivi granite , 1995 .

[67]  O. Rämö,et al.  1700 Ma Shachang complex, northeast China: Proterozoic rapakivi granite not associated with Paleoproterozoic orogenic crust , 1995 .

[68]  J. Beard,et al.  Dehydration-melting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 kbar , 1995 .

[69]  E. Middlemost Naming materials in the magma/igneous rock system , 1994 .

[70]  A. M. Larin,et al.  Pb-Nd-Sr isotopic and geochemical constraints on the origin of the 1.54–1.56 Ga Salmi rapakivi granite—Anorthosite batholith (Karelia, Russia) , 1994 .

[71]  G. Motuza,et al.  Geology, geochemistry and age of a Cu-Mo-bearing granite at Kabeliai, southern Lithuania , 1994 .

[72]  G. Eby Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications , 1992 .

[73]  O. Rämö,et al.  Tectonic setting and origin of the Proterozoic rapakivi granites of southeastern Fennoscandia , 1992, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[74]  R. F. Emslie Granitoids of rapakivi granite-anorthosite and related associations , 1991 .

[75]  K. Condie Precambrian granulites and anorogenic granites: are they related? , 1991 .

[76]  G. Eby The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis , 1990 .

[77]  O. Rämö,et al.  Petrogenesis of the Proterozoic rapakivi granites of Finland , 1990 .

[78]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[79]  J. Whalen,et al.  A-type granites: geochemical characteristics, discrimination and petrogenesis , 1987 .

[80]  J. D. Cr-nlrnNs Origin of an A-type granite: Experimental constraints , 1986 .

[81]  A. Tindle,et al.  Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks , 1984 .

[82]  E. Welin,et al.  Isotopic investigations of the Nordingrå rapakivi massif, north-central Sweden , 1984 .

[83]  W. Boynton Cosmochemistry of the rare earth elements: meteorite studies. , 1984 .

[84]  J. Anderson,et al.  Proterozoic anorogenic granite plutonism of North America , 1983 .

[85]  W. Collins,et al.  Nature and origin of A-type granites with particular reference to southeastern Australia , 1982 .

[86]  D. DePaolo Neodymium isotopes in the Colorado Front Range and crust–mantle evolution in the Proterozoic , 1981, Nature.

[87]  G. Wasserburg,et al.  Sm-Nd isotopic evolution of chondrites , 1980 .

[88]  K. L. Bladh Rapakivi texture from the O’Leary Porphyry, Arizona (U.S.A.) , 1980 .

[89]  M. Loiselle,et al.  Characteristics and origin of anorogenic granites , 1979 .

[90]  S. Ishihara The Magnetite-series and Ilmenite-series Granitic Rocks , 1977 .