A new A-type granitoid occurrence in southernmost Fennoscandia: geochemistry, age and origin of rapakivi-type quartz monzonite from the Pietkowo IG1 borehole, NE Poland
暂无分享,去创建一个
[1] M. Whitehouse,et al. On the origin and evolution of the 1.86–1.76 Ga Mid-Baltic Belt in the western East European Craton , 2021, Precambrian Research.
[2] S. Elming,et al. Paleomagnetic studies of rapakivi complexes in the Fennoscandian shield – Implications to the origin of Proterozoic massif-type anorthosite magmatism , 2021, Precambrian Research.
[3] R. Gyllencreutz,et al. The Precambrian of Gotland, a key for understanding the Proterozoic evolution in southern Fennoscandia , 2021 .
[4] I. Williams,et al. Basement correlation across the southernmost Baltic Sea: Geochemical and geochronological evidence from onshore and offshore deep drill cores, northern Poland , 2021, Precambrian Research.
[5] J. Wiszniewska,et al. Advances in geochronology in the Suwałki anorthosite massif and subsequent granite veins, northeastern Poland , 2021 .
[6] Yue-heng Yang,et al. Allanite U–Th–Pb geochronology by ion microprobe , 2020 .
[7] P. Poprawa. Geological setting and Ediacaran–Palaeozoic evolution of the western slope of the East European Craton and adjacent regions , 2019, Annales Societatis Geologorum Poloniae.
[8] T. Andersen,et al. Zircon as a Proxy for the Magmatic Evolution of Proterozoic Ferroan Granites; the Wiborg Rapakivi Granite Batholith, SE Finland , 2017 .
[9] Olga Rosowiecka,et al. A new magnetic anomaly map of Poland and its contribution to the recognition of crystalline basement rocks , 2017 .
[10] O. Rämö,et al. Geochronology of the Suomenniemi rapakivi granite complex revisited , 2015 .
[11] A. Soesoo,et al. Trans-Baltic Palaeoproterozoic correlations towards the reconstruction of supercontinent Columbia/Nuna , 2015 .
[12] M. Malinowski,et al. Transcurrent nature of the Teisseyre–Tornquist Zone in Central Europe: results of the POLCRUST-01 deep reflection seismic profile , 2015, International Journal of Earth Sciences.
[13] Y. Lahaye,et al. Age and isotopic fingerprints of some plutonic rocks in the Wiborg rapakivi granite batholith with special reference to the dark wiborgite of the Ristisaari Island. , 2014 .
[14] H. Martin,et al. Petrology and geochemistry of rapakivi-type granites from the crystalline basement of NE Poland , 2012 .
[15] Zhidan Zhao,et al. Magmatic zircons from I-, S- and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study , 2012 .
[16] U. Andersson,et al. Character and origin of variably deformed granitoids in central southern Sweden: implications from geochemistry and Nd isotopes , 2011 .
[17] M. Zhai,et al. Nature and origin of the Wenquan granite: Implications for the provenance of Proterozoic A-type granites in the North China craton , 2011 .
[18] E. Sharkov. Middle-proterozoic anorthosite–rapakivi granite complexes: An example of within-plate magmatism in abnormally thick crust: Evidence from the East European Craton , 2010 .
[19] H. Martin,et al. THE ORIGIN OF FERROAN-POTASSIC A-TYPE GRANITOIDS: THE CASE OF THE HORNBLENDE-BIOTITE GRANITE SUITE OF THE MESOPROTEROZOIC MAZURY COMPLEX, NORTHEASTERN POLAND , 2010 .
[20] O. Rämö,et al. FORMATION AND FRACTIONATION OF HIGH-Al THOLEIITIC MAGMAS IN THE AHVENISTO RAPAKIVI GRANITE – MASSIF-TYPE ANORTHOSITE COMPLEX, SOUTHEASTERN FINLAND , 2010 .
[21] L. Ashwal. THE TEMPORALITY OF ANORTHOSITES , 2010 .
[22] T. Andersen,et al. Re-evaluation of Rapakivi Petrogenesis: Source Constraints from the Hf Isotope Composition of Zircon in the Rapakivi Granites and Associated Mafic Rocks of Southern Finland , 2010 .
[23] I. Williams,et al. An extension of the Svecofennian orogenic province into NE Poland: Evidence from geochemistry and detrital zircon from Paleoproterozoic paragneisses , 2009 .
[24] E. Krzemińska,et al. Granity typu A w kompleksie mazurskim - przyczynek do dyskusji o klasyfikacji granitów , 2009 .
[25] T. Tiira,et al. The Moho depth map of the European Plate , 2009 .
[26] M. Whitehouse,et al. Significance of ~ 1.5 Ga zircon and monazite ages from charnockites in southern Lithuania and NE Poland ☆ , 2008 .
[27] B. Bonin. A-type granites and related rocks: Evolution of a concept, problems and prospects , 2007 .
[28] M. Whitehouse,et al. Evidence for a pulse of 1.45 Ga anorthosite–mangerite–charnockite–granite (AMCG) plutonism in Lithuania: implications for the Mesoproterozoic evolution of the East European Craton , 2007 .
[29] R. Dall’Agnol,et al. Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: Implications for classification and petrogenesis of A-type granites , 2007 .
[30] I. Williams,et al. Late Paleoproterozoic arc-related granites from the Mazowsze domain, NE Poland , 2007 .
[31] R. WoNBs. Significance of the assemblage titanite * magnetite * quartz in granitic rocks , 2007 .
[32] E. B. Sal’nikova,et al. The Žemaičių Naumiestis granitoids: New evidences for Mesoproterozoic magmatism in western Lithuania , 2006 .
[33] A. Korja,et al. The Svecofennian orogen: a collage of microcontinents and island arcs , 2006, Geological Society, London, Memoirs.
[34] M. Grad,et al. Crustal structure below the Polish Basin: Is it composed of proximal terranes derived from Baltica? , 2005 .
[35] I. Williams,et al. A Late Paleoproterozoic (1.80 Ga) subduction‐related mafic igneous suite from Lomza, NE Poland , 2005 .
[36] J. Morrison,et al. Ilmenite, magnetite, and peraluminous Mesoproterozoic anorogenic granites of Laurentia and Baltica , 2005 .
[37] R. Dall’Agnol,et al. Petrogenesis of the Paleoproterozoic rapakivi A-type granites of the Archean Carajás metallogenic province, Brazil , 2005 .
[38] R. Korsch,et al. of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards , 2004 .
[39] R. Korsch,et al. TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology , 2003 .
[40] J. Duchesne,et al. Ferro-potassic A-type granites and related rocks in NE Poland and S Lithuania: west of the East European Craton , 2003 .
[41] W. Dörr,et al. U /Pb and Ar /Ar geochronology of anorogenic granite magmatism of the Mazury complex, NE Poland , 2002 .
[42] H. Stein,et al. The north‐eastern Polish anorthosite massifs: petrological, geochemical and isotopic evidence for a crustal derivation , 2002 .
[43] R. Dall’Agnol,et al. 1.88 Ga Oxidized A‐Type Granites of the Rio Maria Region, Eastern Amazonian Craton, Brazil: Positively Anorogenic! , 2002, The Journal of Geology.
[44] E. Slaby,et al. Mantled alkali-feldspar megacrysts from the marginal part of the Karkonosze granitoid massif (SW Poland) , 2002 .
[45] Calvin G. Barnes,et al. A Geochemical Classification for Granitic Rocks , 2001 .
[46] U. Andersson,et al. Petrogenesis of Mesoproterozoic (Subjotnian) rapakivi complexes of central Sweden: implications from U–Pb zircon ages, Nd, Sr and Pb isotopes , 2001, Transactions of the Royal Society of Edinburgh: Earth Sciences.
[47] H. M. Rajesh. Characterization and origin of a compositionally zoned aluminous A-type granite from South India , 2000, Geological Magazine.
[48] B. Edwards,et al. Petrogenesis of the 1·43 Ga Sherman Batholith, SE Wyoming, USA: a Reduced, Rapakivi-type Anorogenic Granite , 1999 .
[49] R. Dall’Agnol,et al. An Experimental Study of a Lower Proterozoic A-type Granite from theEastern Amazonian Craton, Brazil , 1999 .
[50] J. Price,et al. Experimental study of titanite-fluorite equilibria in the A-type Mount Scott Granite: Implications for assessing F contents of felsic magma , 1999 .
[51] O. Eklund. The origin of rapakivi texture by sub-isothermal decompression , 1999 .
[52] R. Alviola. The Proterozoic Ahvenisto rapakivi granite–massif-type anorthosite complex, southeastern Finland; petrography and U–Pb chronology , 1999 .
[53] A. Persson. Absolute (U–Pb) and relative age determinations of intrusive rocks in the Ragunda rapakivi complex, central Sweden , 1999 .
[54] J. Liégeois,et al. The crustal tongue melting model and the origin of massive anorthosites , 1999 .
[55] R. Dall’Agnol,et al. Petrology of the anorogenic, oxidised Jamon and Musa granites, Amazonian Craton: implications for the genesis of Proterozoic A-type granites , 1999 .
[56] A. P. Douce,et al. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas , 1999 .
[57] W. Ridley,et al. Applications of Microanalytical Techniques to Understanding Mineralizing Processes , 1998 .
[58] A. P. Douce,et al. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids , 1997 .
[59] B. Frost,et al. Reduced rapakivi-type granites: The tholeiite connection , 1997 .
[60] P. Kresten,et al. The anorogenic Noran intrusion ‐ a Mesoproterozoic rapakivi massif in south‐central Sweden , 1997 .
[61] U. Andersson. The sub‐Jotnian strömsbro granite complex at gävle, Sweden , 1997 .
[62] A. M. Larin,et al. Chronology of multiphase emplacement of the Salmi rapakivi granite-anorthosite complex, Baltic Shield: implications for magmatic evolution , 1997 .
[63] P. King,et al. Characterization and Origin of Aluminous A-type Granites from the Lachlan Fold Belt, Southeastern Australia , 1997 .
[64] O. Rämö,et al. Radiogenic isotopes of the Estonian and Latvian rapakivi granite suites: new data from the concealed Precambrian of the East European Craton , 1996 .
[65] W. Collins,et al. Derivation of A-type Granites from a Dehydrated Charnockitic Lower Crust: Evidence from the Chaelundi Complex, Eastern Australia , 1996 .
[66] O. Rämö,et al. One hundred years of rapakivi granite , 1995 .
[67] O. Rämö,et al. 1700 Ma Shachang complex, northeast China: Proterozoic rapakivi granite not associated with Paleoproterozoic orogenic crust , 1995 .
[68] J. Beard,et al. Dehydration-melting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 kbar , 1995 .
[69] E. Middlemost. Naming materials in the magma/igneous rock system , 1994 .
[70] A. M. Larin,et al. Pb-Nd-Sr isotopic and geochemical constraints on the origin of the 1.54–1.56 Ga Salmi rapakivi granite—Anorthosite batholith (Karelia, Russia) , 1994 .
[71] G. Motuza,et al. Geology, geochemistry and age of a Cu-Mo-bearing granite at Kabeliai, southern Lithuania , 1994 .
[72] G. Eby. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications , 1992 .
[73] O. Rämö,et al. Tectonic setting and origin of the Proterozoic rapakivi granites of southeastern Fennoscandia , 1992, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.
[74] R. F. Emslie. Granitoids of rapakivi granite-anorthosite and related associations , 1991 .
[75] K. Condie. Precambrian granulites and anorogenic granites: are they related? , 1991 .
[76] G. Eby. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis , 1990 .
[77] O. Rämö,et al. Petrogenesis of the Proterozoic rapakivi granites of Finland , 1990 .
[78] W. McDonough,et al. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.
[79] J. Whalen,et al. A-type granites: geochemical characteristics, discrimination and petrogenesis , 1987 .
[80] J. D. Cr-nlrnNs. Origin of an A-type granite: Experimental constraints , 1986 .
[81] A. Tindle,et al. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks , 1984 .
[82] E. Welin,et al. Isotopic investigations of the Nordingrå rapakivi massif, north-central Sweden , 1984 .
[83] W. Boynton. Cosmochemistry of the rare earth elements: meteorite studies. , 1984 .
[84] J. Anderson,et al. Proterozoic anorogenic granite plutonism of North America , 1983 .
[85] W. Collins,et al. Nature and origin of A-type granites with particular reference to southeastern Australia , 1982 .
[86] D. DePaolo. Neodymium isotopes in the Colorado Front Range and crust–mantle evolution in the Proterozoic , 1981, Nature.
[87] G. Wasserburg,et al. Sm-Nd isotopic evolution of chondrites , 1980 .
[88] K. L. Bladh. Rapakivi texture from the O’Leary Porphyry, Arizona (U.S.A.) , 1980 .
[89] M. Loiselle,et al. Characteristics and origin of anorogenic granites , 1979 .
[90] S. Ishihara. The Magnetite-series and Ilmenite-series Granitic Rocks , 1977 .