Enhancement in pool boiling performance of GNP/Cu-Al2O3 nano-composite coated copper microporous surface

[1]  Mantu Kumar Das,et al.  Significance of surface modification on nucleate pool boiling heat transfer characteristics of refrigerant R-141b , 2021 .

[2]  K. Gupta,et al.  Influence of surface wettability and selection of coating material for enhancement of heat transfer performance , 2020 .

[3]  S. Pal,et al.  Surface wettability change on TF nanocoated surfaces during pool boiling heat transfer of refrigerant R-141b , 2020, Heat and Mass Transfer.

[4]  Ping-Hei Chen,et al.  Surface roughness variation effects on copper tubes in pool boiling of water , 2020 .

[5]  Y. Ferng,et al.  Investigating effects of heating orientations on nucleate boiling heat transfer, bubble dynamics, and wall heat flux partition boiling model for pool boiling , 2019 .

[6]  A. Robinson,et al.  Enhanced nucleate pool boiling on copper-diamond textured surfaces , 2019, Applied Thermal Engineering.

[7]  B. Sundén,et al.  Saturated pool boiling heat transfer of acetone and HFE-7200 on modified surfaces by electrophoretic and electrochemical deposition , 2019, Applied Energy.

[8]  Matheus dos Santos Guzella,et al.  Experimental investigation of the CHF of HFE-7100 under pool boiling conditions on differently roughened surfaces , 2019, International Journal of Heat and Mass Transfer.

[9]  Guo Qi Zhang,et al.  Effect of Nanostructured Microporous Surfaces on Pool Boiling Augmentation , 2019 .

[10]  K. Kim,et al.  Surface wettability effect on nucleate pool boiling heat transfer with titanium oxide (TiO2) coated heating surface , 2019, International Journal of Heat and Mass Transfer.

[11]  S. Kandlikar,et al.  Improved wettability of graphene nanoplatelets (GNP)/copper porous coatings for dramatic improvements in pool boiling heat transfer , 2019, International Journal of Heat and Mass Transfer.

[12]  D. Fadda,et al.  Effects of surface wettability on pool boiling of water using super-polished silicon surfaces , 2018, International Journal of Heat and Mass Transfer.

[13]  Sanjay Kumar Gupta,et al.  Effect of two-step electrodeposited Cu–TiO2 nanocomposite coating on pool boiling heat transfer performance , 2018, Journal of Thermal Analysis and Calorimetry.

[14]  R. Misra,et al.  Experimental study of pool boiling heat transfer on copper surfaces with Cu-Al2O3 nanocomposite coatings , 2018, International Communications in Heat and Mass Transfer.

[15]  Shu-Shen Lyu,et al.  Wettability modification to further enhance the pool boiling performance of the micro nano bi-porous copper surface structure , 2018 .

[16]  S. Jun,et al.  Effect of surface roughness on pool boiling heat transfer of water on hydrophobic surfaces , 2018 .

[17]  Honghyun Cho,et al.  Experimental investigation of pool boiling characteristics in Al2O3 nanofluid according to surface roughness and concentration , 2017 .

[18]  Yurong He,et al.  Effect of nanoparticle size and concentration on boiling performance of SiO2 nanofluid , 2017 .

[19]  H. Saffari,et al.  Effect of electrolyte temperature on porous electrodeposited copper for pool boiling enhancement , 2017 .

[20]  B. Saha,et al.  Experimental study of nucleate pool boiling heat transfer of water by surface functionalization with crystalline TiO2 nanostructure , 2017 .

[21]  B. Saha,et al.  Experimental study of nucleate pool boiling heat transfer of water by surface functionalization with SiO2 nanostructure , 2017 .

[22]  Xiande Fang,et al.  A comparative study of correlations of critical heat flux of pool boiling , 2017 .

[23]  S. Jun,et al.  Effect of heater orientation on pool boiling heat transfer from sintered copper microporous coating in saturated water , 2016 .

[24]  S. Jun,et al.  Effect of surface roughness on pool boiling heat transfer at a heated surface having moderate wettability , 2016 .

[25]  H. Saffari,et al.  Investigation pool boiling heat transfer in U-shaped mesochannel with electrodeposited porous coating , 2016 .

[26]  S. Suresh,et al.  Pool boiling heat transfer enhancement using vertically aligned carbon nanotube coatings on a copper substrate , 2016 .

[27]  Sudev Das,et al.  Experimental study of nucleate pool boiling heat transfer of water on silicon oxide nanoparticle coated copper heating surface , 2016 .

[28]  M. Hashim,et al.  Characterization of Cu-Al2O3 and Ni-Al2O3 Nanocomposites Electrodeposited on Copper Substrate , 2016 .

[29]  A. Moita,et al.  Influence of surface topography in the boiling mechanisms , 2015 .

[30]  Kai Chen,et al.  Pool boiling heat transfer enhancement with copper nanowire arrays , 2015 .

[31]  S. Kandlikar,et al.  Development of a two-step electrodeposition process for enhancing pool boiling , 2014 .

[32]  Ji Min Kim,et al.  Effect of a graphene oxide coating layer on critical heat flux enhancement under pool boiling , 2014 .

[33]  M. Rubner,et al.  Separate effects of surface roughness, wettability, and porosity on the boiling critical heat flux , 2013 .

[34]  S. Jun,et al.  Pool boiling on nano-textured surfaces , 2013 .

[35]  Seung Won Lee,et al.  Pool boiling CHF enhancement by graphene-oxide nanofluid under nuclear coolant chemical environments , 2012 .

[36]  E. Wang,et al.  Structured surfaces for enhanced pool boiling heat transfer , 2012 .

[37]  Ping-Hei Chen,et al.  Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings , 2012 .

[38]  S. Kandlikar,et al.  Effect of open microchannel geometry on pool boiling enhancement , 2012 .

[39]  V. Carey,et al.  Critical heat flux of pool boiling on Si nanowire array-coated surfaces , 2011 .

[40]  Chih-Wei Lee,et al.  Boiling enhancement by TiO2 nanoparticle deposition , 2011 .

[41]  H. Qiu,et al.  Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling , 2010, 1008.2208.

[42]  S. M. You,et al.  Pool boiling characteristics of low concentration nanofluids , 2010 .

[43]  P. Marty,et al.  Surface wettability control by nanocoating: The effects on pool boiling heat transfer and nucleation mechanism , 2009 .

[44]  S. Mori,et al.  Enhancement of the critical heat flux in saturated pool boiling using honeycomb porous media , 2009 .

[45]  T. Fisher,et al.  Effects of carbon nanotube arrays on nucleate pool boiling , 2007 .

[46]  S. Kim,et al.  Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux , 2007 .

[47]  Arup Kumar Das,et al.  Nucleate boiling of water from plain and structured surfaces , 2007 .

[48]  S. Fang,et al.  Pool Boiling Experiments on Multiwalled Carbon Nanotube (MWCNT) Forests , 2006 .

[49]  A. R. Balakrishnan,et al.  Nucleation site density in pool boiling of saturated pure liquids: Effect of surface microroughness and surface and liquid physical properties , 1997 .

[50]  V. Dhir,et al.  Effect of Surface Wettability on Active Nucleation Site Density During Pool Boiling of Water on a Ve , 1993 .

[51]  Mamoru Ishii,et al.  Interfacial area and nucleation site density in boiling systems , 1983 .

[52]  R. Cole Bubble frequencies and departure volumes at subatmospheric pressures , 1967 .

[53]  W. Rohsenow A Method of Correlating Heat-Transfer Data for Surface Boiling of Liquids , 1952, Journal of Fluids Engineering.

[54]  Wenbin Zhou,et al.  Pool boiling performance and bubble dynamics on graphene oxide nanocoating surface , 2020 .

[55]  Yong Tang,et al.  Pool-boiling enhancement by novel metallic nanoporous surface , 2013 .

[56]  K. Kim,et al.  Pool boiling of saturated FC-72 on nano-porous surface , 2005 .

[57]  N. Zuber Nucleate boiling. The region of isolated bubbles and the similarity with natural convection , 1963 .

[58]  Fundamental aspects of copper electrodeposition in the hydrogen co-deposition range , 2022 .