Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101.

[1]  K. D. de Jong,et al.  Hydrogen storage using physisorption – materials demands , 2001 .

[2]  A. Züttel,et al.  Hydrogen-storage materials for mobile applications , 2001, Nature.

[3]  Ulrich Müller,et al.  Hydrogen Adsorption in Metal–Organic Frameworks: Cu‐MOFs and Zn‐MOFs Compared , 2006 .

[4]  A. Dailly,et al.  Saturation of hydrogen sorption in Zn benzenedicarboxylate and Zn naphthalenedicarboxylate. , 2006, The journal of physical chemistry. B.

[5]  Siegmar Roth,et al.  Hydrogen adsorption in different carbon nanostructures , 2005 .

[6]  Omar M Yaghi,et al.  Exceptional H2 saturation uptake in microporous metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[7]  S. Saadallah,et al.  The influence of textural properties on the adsorption of hydrogen on ordered nanostructured carbons , 2005 .

[8]  Chen,et al.  High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures , 1999, Science.

[9]  M. Monge,et al.  Metal−Organic Scandium Framework: Useful Material for Hydrogen Storage and Catalysis , 2005 .

[10]  M. Hirscher,et al.  Are carbon nanostructures an efficient hydrogen storage medium , 2003 .

[11]  T. Yildirim,et al.  Direct observation of hydrogen adsorption sites and nanocage formation in metal-organic frameworks. , 2005, Physical review letters.

[12]  C. Serre,et al.  Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C-C6H4-CO2) (M = Al3+, Cr3+), MIL-53. , 2003, Chemical communications.

[13]  Jörg Fink,et al.  Hydrogen storage in different carbon nanostructures , 2002 .

[14]  Omar M Yaghi,et al.  Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[15]  Kimoon Kim,et al.  Microporous manganese formate: a simple metal-organic porous material with high framework stability and highly selective gas sorption properties. , 2004, Journal of the American Chemical Society.

[16]  Andreas Züttel,et al.  Hydrogen storage in carbon nanotubes. , 2003, Journal of nanoscience and nanotechnology.

[17]  Gérard Férey,et al.  A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. , 2004, Angewandte Chemie.

[18]  Omar M Yaghi,et al.  Hydrogen sorption in functionalized metal-organic frameworks. , 2004, Journal of the American Chemical Society.

[19]  Michael O'Keeffe,et al.  Hydrogen Storage in Microporous Metal-Organic Frameworks , 2003, Science.

[20]  A. Fletcher,et al.  Hysteretic Adsorption and Desorption of Hydrogen by Nanoporous Metal-Organic Frameworks , 2004, Science.

[21]  Michael Hirscher,et al.  Hydrogen Physisorption in Metal–Organic Porous Crystals , 2005 .

[22]  M. P. Suh,et al.  A robust porous material constructed of linear coordination polymer chains: reversible single-crystal to single-crystal transformations upon dehydration and rehydration. , 2004, Angewandte Chemie.

[23]  G. Sandrock A panoramic overview of hydrogen storage alloys from a gas reaction point of view , 1999 .

[24]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[25]  Louis Schlapbach,et al.  Hydrogen as a Fuel and Its Storage for Mobility and Transport , 2002 .

[26]  Andreas Züttel,et al.  Materials for hydrogen storage , 2003 .

[27]  Kimoon Kim,et al.  Rigid and flexible: a highly porous metal-organic framework with unusual guest-dependent dynamic behavior. , 2004, Angewandte Chemie.

[28]  Jörg Fink,et al.  Hydrogen storage in carbon nanostructures , 2002 .

[29]  Gary G. Tibbetts,et al.  Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers , 2001 .

[30]  Paul A. Anderson,et al.  Hydrogen adsorption in zeolites a, x, y and rho , 2003 .

[31]  A. Chambers,et al.  Hydrogen Storage in Graphite Nanofibers , 1998 .

[32]  J. Marrot,et al.  MIL-96, a porous aluminum trimesate 3D structure constructed from a hexagonal network of 18-membered rings and mu3-oxo-centered trinuclear units. , 2006, Journal of the American Chemical Society.

[33]  Jeffrey R. Long,et al.  Strong H2 Binding and Selective Gas Adsorption within the Microporous Coordination Solid Mg3(O2C-C10H6-CO2)3 , 2005 .

[34]  S. Bhatia,et al.  Optimum conditions for adsorptive storage. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[35]  G. McIntyre,et al.  Determination of the hydrogen absorption sites in Zn4O(1,4-benzenedicarboxylate) by single crystal neutron diffraction. , 2006, Chemical communications.

[36]  C. Serre,et al.  Investigation of acid sites in a zeotypic giant pores chromium(III) carboxylate. , 2006, Journal of the American Chemical Society.

[37]  A. J. Blake,et al.  High H2 adsorption by coordination-framework materials. , 2006, Angewandte Chemie.

[38]  Tatsuo C. Kobayashi,et al.  Direct observation of hydrogen molecules adsorbed onto a microporous coordination polymer. , 2005, Angewandte Chemie.

[39]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[40]  Jong‐San Chang,et al.  Low-temperature adsorption of hydrogen on nanoporous aluminophosphates: effect of pore size. , 2006, The journal of physical chemistry. B.

[41]  M. Hirscher,et al.  Hydrogen storage in carbon nanotubes. , 2003, Journal of nanoscience and nanotechnology.