Role of Pseudomonas aeruginosa AmpR on β-lactam and non-β-lactam transient cross-resistance upon pre-exposure to subinhibitory concentrations of antibiotics.

Pseudomonas aeruginosa is one of the most dreaded opportunistic pathogens accounting for 10 % of hospital-acquired infections, with a 50 % mortality rate in chronically ill patients. The increased prevalence of drug-resistant isolates is a major cause of concern. Resistance in P. aeruginosa is mediated by various mechanisms, some of which are shared among different classes of antibiotics and which raise the possibility of cross-resistance. The goal of this study was to explore the effect of subinhibitory concentrations (SICs) of clinically relevant antibiotics and the role of a global antibiotic resistance and virulence regulator, AmpR, in developing cross-resistance. We investigated the induction of transient cross-resistance in P. aeruginosa PAO1 upon exposure to SICs of antibiotics. Pre-exposure to carbapenems, specifically imipenem, even at 3 ng ml(-1), adversely affected the efficacy of clinically used penicillins and cephalosporins. The high β-lactam resistance was due to elevated expression of both ampC and ampR, encoding a chromosomal β-lactamase and its regulator, respectively. Differences in the susceptibility of ampR and ampC mutants suggested non-AmpC-mediated regulation of β-lactam resistance by AmpR. The increased susceptibility of P. aeruginosa in the absence of ampR to various antibiotics upon SIC exposure suggests that AmpR plays a major role in the cross-resistance. AmpR was shown previously to be involved in resistance to quinolones by regulating MexEF-OprN efflux pump. The data here further indicate the role of AmpR in cross-resistance between quinolones and aminoglycosides. This was confirmed using quantitative PCR, where expression of the mexEF efflux pump was further induced by ciprofloxacin and tobramycin, its substrate and a non-substrate, respectively, in the absence of ampR. The data presented here highlight the intricate cross-regulation of antibiotic resistance pathways at SICs of antibiotics and the need for careful assessment of the order of antibiotic regimens as this may have dire consequences. Targeting a global regulator such as AmpR that connects diverse pathways is a feasible therapeutic approach to combat P. aeruginosa pathogenesis.

[1]  D. Curcio Multidrug-resistant Gram-negative bacterial infections: are you ready for the challenge? , 2014, Current clinical pharmacology.

[2]  S. Lory,et al.  Deep sequencing analyses expands the Pseudomonas aeruginosa AmpR regulon to include small RNA-mediated regulation of iron acquisition, heat shock and oxidative stress response , 2013, Nucleic acids research.

[3]  A. Pühler,et al.  Complete sequence of broad-host-range plasmid pNOR-2000 harbouring the metallo-β-lactamase gene blaVIM-2 from Pseudomonas aeruginosa. , 2013, The Journal of antimicrobial chemotherapy.

[4]  M. Falagas,et al.  β-Lactam plus aminoglycoside or fluoroquinolone combination versus β-lactam monotherapy for Pseudomonas aeruginosa infections: a meta-analysis. , 2013, International journal of antimicrobial agents.

[5]  Brendan F Gilmore,et al.  Clinical relevance of the ESKAPE pathogens , 2013, Expert review of anti-infective therapy.

[6]  R. Mehvar Preface. State of Current Clinical Pharmacology. , 2013, Current clinical pharmacology.

[7]  Hainen Yan,et al.  Study on drug resistance of Pseudomonas aeruginosa plasmid-mediated AmpC β-lactamase. , 2013, Molecular medicine reports.

[8]  K. Mathee,et al.  A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence , 2012, Nucleic acids research.

[9]  Y. Kawamura,et al.  MexXY multidrug efflux system of Pseudomonas aeruginosa , 2012, Front. Microbio..

[10]  A. Oliver,et al.  Genetic Markers of Widespread Extensively Drug-Resistant Pseudomonas aeruginosa High-Risk Clones , 2012, Antimicrobial Agents and Chemotherapy.

[11]  A. Oliver,et al.  Unusual diversity of acquired β-lactamases in multidrug-resistant Pseudomonas aeruginosa isolates in a Mexican hospital. , 2012, Microbial drug resistance.

[12]  M. Toleman,et al.  Genetic and Biochemical Characterization of an Acquired Subgroup B3 Metallo-β-Lactamase Gene, blaAIM-1, and Its Unique Genetic Context in Pseudomonas aeruginosa from Australia , 2012, Antimicrobial Agents and Chemotherapy.

[13]  P. Nordmann,et al.  Genetic support and diversity of acquired extended-spectrum β-lactamases in Gram-negative rods. , 2012, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[14]  Pranita D. Tamma,et al.  Combination Therapy for Treatment of Infections with Gram-Negative Bacteria , 2012, Clinical Microbiology Reviews.

[15]  S. Lory,et al.  The Regulatory Repertoire of Pseudomonas aeruginosa AmpC ß-Lactamase Regulator AmpR Includes Virulence Genes , 2012, PloS one.

[16]  N. Boyd,et al.  Combination Antibiotic Therapy for Empiric and Definitive Treatment of Gram‐Negative Infections: Insights from the Society of Infectious Diseases Pharmacists , 2011, Pharmacotherapy.

[17]  D. Andersson,et al.  Persistence of antibiotic resistance in bacterial populations. , 2011, FEMS microbiology reviews.

[18]  R. Hancock,et al.  The intrinsic resistome of Pseudomonas aeruginosa to β-lactams , 2011, Virulence.

[19]  K. Mathee,et al.  Co-regulation of β-lactam resistance, alginate production and quorum sensing in Pseudomonas aeruginosa , 2011, Journal of medical microbiology.

[20]  R. Hancock,et al.  Creeping baselines and adaptive resistance to antibiotics. , 2011, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[21]  E. Ernst,et al.  Is double coverage of gram-negative organisms necessary? , 2011, American journal of health-system pharmacy : AJHP : official journal of the American Society of Health-System Pharmacists.

[22]  Robert E. W. Hancock,et al.  The Sensor Kinase CbrA Is a Global Regulator That Modulates Metabolism, Virulence, and Antibiotic Resistance in Pseudomonas aeruginosa , 2010, Journal of bacteriology.

[23]  M. Wolff,et al.  Multirésistance chez Pseudomonas aeruginosa - Vers l’impasse thérapeutique ? , 2010 .

[24]  L. Rice,et al.  Progress and Challenges in Implementing the Research on ESKAPE Pathogens , 2010, Infection Control & Hospital Epidemiology.

[25]  T. Bannerman,et al.  Synergy Testing by Etest, Microdilution Checkerboard, and Time-Kill Methods for Pan-Drug-Resistant Acinetobacter baumannii , 2010, Antimicrobial Agents and Chemotherapy.

[26]  Wei-hua Zhao,et al.  β-Lactamases identified in clinical isolates of Pseudomonas aeruginosa , 2010, Critical reviews in microbiology.

[27]  R. Flamm,et al.  Comparison of Broth Microdilution, Agar Dilution, and Etest for Susceptibility Testing of Doripenem against Gram-Negative and Gram-Positive Pathogens , 2010, Journal of Clinical Microbiology.

[28]  A. Gales,et al.  Multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii: resistance mechanisms and implications for therapy , 2010, Expert review of anti-infective therapy.

[29]  F. Barbier,et al.  [Multi-drug resistant Pseudomonas aeruginosa: towards a therapeutic dead end?]. , 2010, Medecine sciences : M/S.

[30]  K. Kerr,et al.  Pseudomonas aeruginosa: a formidable and ever-present adversary. , 2009, The Journal of hospital infection.

[31]  M. Page,et al.  Prospects for the next anti-Pseudomonas drug. , 2009, Current opinion in pharmacology.

[32]  Nancy D. Hanson,et al.  Antibacterial-Resistant Pseudomonas aeruginosa: Clinical Impact and Complex Regulation of Chromosomally Encoded Resistance Mechanisms , 2009, Clinical Microbiology Reviews.

[33]  R. Hancock,et al.  Regulation of virulence and antibiotic resistance by two-component regulatory systems in Pseudomonas aeruginosa. , 2009, FEMS microbiology reviews.

[34]  George A. Jacoby,et al.  AmpC β-Lactamases , 2009, Clinical Microbiology Reviews.

[35]  F. Baquero,et al.  Antibiotics and antibiotic resistance in water environments. , 2008, Current opinion in biotechnology.

[36]  H. Giamarellou,et al.  Current therapies for pseudomonas aeruginosa. , 2008, Critical care clinics.

[37]  Varsha Gupta Metallo beta lactamases in Pseudomonas aeruginosa and Acinetobacter species , 2008, Expert opinion on investigational drugs.

[38]  J. Davies,et al.  The world of subinhibitory antibiotic concentrations. , 2006, Current opinion in microbiology.

[39]  M. Jacobs,et al.  Activity of Retapamulin against Streptococcus pyogenes and Staphylococcus aureus Evaluated by Agar Dilution, Microdilution, E-Test, and Disk Diffusion Methodologies , 2006, Antimicrobial Agents and Chemotherapy.

[40]  Clinical,et al.  Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically : Approved standard , 2006 .

[41]  K. Soares-Weiser,et al.  Beta lactam antibiotic monotherapy versus beta lactam-aminoglycoside antibiotic combination therapy for sepsis. , 2006, The Cochrane database of systematic reviews.

[42]  J. Mcgowan Resistance in nonfermenting gram-negative bacteria: multidrug resistance to the maximum. , 2006, American journal of infection control.

[43]  C. Koh,et al.  Pseudomonas aeruginosa AmpR Is a Global Transcriptional Factor That Regulates Expression of AmpC and PoxB β-Lactamases, Proteases, Quorum Sensing, and Other Virulence Factors , 2005, Antimicrobial Agents and Chemotherapy.

[44]  K. Mathee,et al.  Characterization of poxB, a chromosomal-encoded Pseudomonas aeruginosa oxacillinase. , 2005, Gene.

[45]  J. Mekalanos,et al.  ExsE, a secreted regulator of type III secretion genes in Pseudomonas aeruginosa , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[46]  D. Livermore Clinical significance of beta-lactamase induction and stable derepression in gram-negative rods , 1987, European Journal of Clinical Microbiology.

[47]  P. Nordmann,et al.  Biochemical Characterization of the Naturally Occurring Oxacillinase OXA-50 of Pseudomonas aeruginosa , 2004, Antimicrobial Agents and Chemotherapy.

[48]  Martin Schuster,et al.  Pseudomonas aeruginosa Biofilms Exposed to Imipenem Exhibit Changes in Global Gene Expression and β-Lactamase and Alginate Production , 2004, Antimicrobial Agents and Chemotherapy.

[49]  Leonard Leibovici,et al.  β lactam monotherapy versus β lactam-aminoglycoside combination therapy for sepsis in immunocompetent patients: systematic review and meta-analysis of randomised trials , 2004, BMJ : British Medical Journal.

[50]  H. Nikaido Molecular Basis of Bacterial Outer Membrane Permeability Revisited , 2003, Microbiology and Molecular Biology Reviews.

[51]  F. Odds,et al.  Synergy, antagonism, and what the chequerboard puts between them. , 2003, The Journal of antimicrobial chemotherapy.

[52]  D. Livermore,et al.  Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? , 2002, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[53]  K. Soares-Weiser,et al.  Beta lactam monotherapy versus beta lactam‐aminoglycoside combination therapy for treating sepsis , 2001 .

[54]  P. Bradford Extended-Spectrum β-Lactamases in the 21st Century: Characterization, Epidemiology, and Detection of This Important Resistance Threat , 2001, Clinical Microbiology Reviews.

[55]  M. Arendrup,et al.  Comparison of Etest and a tablet diffusion test with the NCCLS broth microdilution method for fluconazole and amphotericin B susceptibility testing of Candida isolates. , 2001, The Journal of antimicrobial chemotherapy.

[56]  T. Nakae,et al.  Variation of the mexT gene, a regulator of the MexEF-oprN efflux pump expression in wild-type strains of Pseudomonas aeruginosa. , 2000, FEMS microbiology letters.

[57]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[58]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO 1 , an opportunistic pathogen , 2000 .

[59]  N. Masuda,et al.  Naomasa Pseudomonas aeruginosa Pumps in MexCD-OprJ , and MexXY-OprM Efflux Substrate Specificities of MexAB-OprM , 2000 .

[60]  N. Hanson,et al.  Regulation of inducible AmpC beta-lactamase expression among Enterobacteriaceae. , 1999, Current pharmaceutical design.

[61]  T. Köhler,et al.  Characterization of MexT, the Regulator of the MexE-MexF-OprN Multidrug Efflux System of Pseudomonas aeruginosa , 1999, Journal of bacteriology.

[62]  Y. Carmeli,et al.  Emergence of Antibiotic-Resistant Pseudomonas aeruginosa: Comparison of Risks Associated with Different Antipseudomonal Agents , 1999, Antimicrobial Agents and Chemotherapy.

[63]  F. Baquero,et al.  Selective compartments for resistant microorganisms in antibiotic gradients. , 1997, BioEssays : news and reviews in molecular, cellular and developmental biology.

[64]  N. Gotoh,et al.  Characterization of MexE–MexF–OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa , 1997, Molecular microbiology.

[65]  D. Heinrichs,et al.  Expression of the multidrug resistance operon mexA-mexB-oprM in Pseudomonas aeruginosa: mexR encodes a regulator of operon expression , 1996, Antimicrobial agents and chemotherapy.

[66]  K. Poole,et al.  Overexpression of the mexC–mexD–oprJ efflux operon in nfxB‐type multidrug‐resistant strains of Pseudomonas aeruginosa , 1996, Molecular microbiology.

[67]  N. Masuda,et al.  Quantitative correlation between susceptibility and OprJ production in NfxB mutants of Pseudomonas aeruginosa , 1996, Antimicrobial agents and chemotherapy.

[68]  H. Nikaido,et al.  Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa , 1995, Antimicrobial agents and chemotherapy.

[69]  S. Busby,et al.  Investigation of the Pseudomonas aeruginosa ampR gene and its role at the chromosomal ampC beta-lactamase promoter. , 1993, FEMS microbiology letters.

[70]  S. Busby,et al.  Cloning, sequencing and analysis of the structural gene and regulatory region of the Pseudomonas aeruginosa chromosomal ampC beta-lactamase. , 1990, The Biochemical journal.

[71]  S. Lindquist,et al.  Binding of the Citrobacter freundii AmpR regulator to a single DNA site provides both autoregulation and activation of the inducible ampC beta-lactamase gene , 1989, Journal of bacteriology.

[72]  D. Livermore,et al.  β-Lactamase Lability and Inducer Power of Newer β-Lactam Antibiotics in Relation to Their Activity Against β-Lactamase-Inducibility Mutants of Pseudomonas aeruginosa , 1987 .

[73]  S. Normark,et al.  Contribution of chromosomal beta-lactamases to beta-lactam resistance in enterobacteria. , 1986, Reviews of infectious diseases.

[74]  S. Lindquist,et al.  Chromosomal beta-lactam resistance in enterobacteria. , 1986, Scandinavian journal of infectious diseases. Supplementum.

[75]  A. Stebbing,et al.  Hormesis--the stimulation of growth by low levels of inhibitors. , 1982, The Science of the total environment.

[76]  D. Caron,et al.  Outer membrane permeability in Pseudomonas aeruginosa: comparison of a wild-type with an antibiotic-supersusceptible mutant , 1982, Antimicrobial Agents and Chemotherapy.

[77]  T. Hennessey Inducible β-lactamase in Enterobacter. , 1967 .

[78]  T. Hennessey Inducible beta-lactamase in Enterobacter. , 1967, Journal of general microbiology.