Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum.

We demonstrate a wide-bandgap semiconductor photonics platform based on nanocrystalline aluminum nitride (AlN) on sapphire. This photonics platform guides light at low loss from the ultraviolet (UV) to the visible spectrum. We measure ring resonators with intrinsic quality factor (Q) exceeding 170,000 at 638 nm and Q >20,000 down to 369.5 nm, which shows a promising path for low-loss integrated photonics in UV and visible spectrum. This platform opens up new possibilities in integrated quantum optics with trapped ions or atom-like color centers in solids, as well as classical applications including nonlinear optics and on-chip UV-spectroscopy.

[1]  R. Schlesser,et al.  Optical nonlinear and electro‐optical coefficients in bulk aluminium nitride single crystals , 2017 .

[2]  Lai Wang,et al.  Integrated continuous-wave aluminum nitride Raman laser , 2017 .

[3]  F. Komarov,et al.  Origin of visible photoluminescence from Si-rich and N-rich silicon nitride films , 2017 .

[4]  Michal Lipson,et al.  Low-loss silicon platform for broadband mid-infrared photonics , 2017, 1703.03517.

[5]  Lai Wang,et al.  Aluminum nitride-on-sapphire platform for integrated high-Q microresonators. , 2017, Optics express.

[6]  K. Vahala,et al.  Coherent ultra-violet to near-infrared generation in silica ridge waveguides , 2017, Nature Communications.

[7]  Chia-Hung Lin,et al.  Preparation of high-quality AlN on sapphire by high-temperature face-to-face annealing , 2016 .

[8]  Richard Soref,et al.  AlGaN/AlN integrated photonics platform for the ultraviolet and visible spectral range. , 2016, Optics express.

[9]  Xiang Guo,et al.  On-Chip Strong Coupling and Efficient Frequency Conversion between Telecom and Visible Optical Modes. , 2016, Physical review letters.

[10]  M. Gerhold,et al.  UV second harmonic generation in AlN waveguides with modal phase matching , 2016 .

[11]  Hong X. Tang,et al.  Aluminum nitride as nonlinear optical material for on-chip frequency comb generation and frequency conversion , 2016 .

[12]  Xiang Guo,et al.  Parametric down-conversion photon-pair source on a nanophotonic chip , 2016, Light: Science & Applications.

[13]  F. Semond,et al.  Deep-UV nitride-on-silicon microdisk lasers , 2016, Scientific Reports.

[14]  Rajeev J Ram,et al.  Integrated optical addressing of an ion qubit. , 2015, Nature nanotechnology.

[15]  Z. Sitar,et al.  Optical properties of aluminum nitride single crystals in the THz region , 2015 .

[16]  Gregory R. Steinbrecher,et al.  High-fidelity quantum state evolution in imperfect photonic integrated circuits , 2015 .

[17]  H. Tang,et al.  Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator , 2014, 1410.5018.

[18]  Ronald L. Walsworth,et al.  Atom-like crystal defects: From quantum computers to biological sensors , 2014 .

[19]  J. Bowers,et al.  Ultra‐low loss waveguide platform and its integration with silicon photonics , 2014 .

[20]  Philippe Boucaud,et al.  Aluminum nitride photonic crystals and microdiscs for ultra-violet nanophotonics , 2014 .

[21]  M. Siegel,et al.  Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths , 2014 .

[22]  H. Tang,et al.  Low‐loss aluminium nitride thin film for mid‐infrared microphotonics , 2014 .

[23]  Wesley D Sacher,et al.  Dimensional variation tolerant silicon-on-insulator directional couplers. , 2014, Optics express.

[24]  H. Kimble,et al.  Atom–light interactions in photonic crystals , 2013, Nature Communications.

[25]  R. Baets,et al.  Low-Loss Singlemode PECVD Silicon Nitride Photonic Wire Waveguides for 532–900 nm Wavelength Window Fabricated Within a CMOS Pilot Line , 2013, IEEE Photonics Journal.

[26]  R. Morandotti,et al.  New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics , 2013, Nature Photonics.

[27]  C. Xiong,et al.  Optical frequency comb generation from aluminum nitride microring resonator. , 2013, Optics letters.

[28]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[29]  C. Xiong,et al.  Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics , 2012, 1210.0975.

[30]  C. Xiong,et al.  Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing. , 2012, Nano letters.

[31]  C. Xiong,et al.  Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators , 2012, 1205.3271.

[32]  C. Xiong,et al.  Integrated high frequency aluminum nitride optomechanical resonators , 2012, 1204.4203.

[33]  M. Stoneking,et al.  Larger mitochondrial DNA than Y-chromosome differences between matrilocal and patrilocal groups from Sumatra. , 2011, Nature communications.

[34]  Martin Feneberg,et al.  High-excitation and high-resolution photoluminescence spectra of bulk AlN , 2010 .

[35]  L. Jiang,et al.  Quantum entanglement between an optical photon and a solid-state spin qubit , 2010, Nature.

[36]  Luming Duan,et al.  Colloquium: Quantum networks with trapped ions , 2010 .

[37]  Thomas Udem,et al.  Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments , 2010 .

[38]  P. Günter,et al.  UV integrated optics devices based on beta-barium borate , 2009 .

[39]  P. Charette,et al.  Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties. , 2008, Optics express.

[40]  Kazuhiro Ikeda,et al.  Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides. , 2008, Optics express.

[41]  Karl K. Berggren,et al.  Using high-contrast salty development of hydrogen silsesquioxane for sub-10‐nm half-pitch lithography , 2007 .

[42]  E. Suh,et al.  Effect of rapid thermal annealing on the properties of PECVD SiNx thin films , 2007 .

[43]  A. Pisano,et al.  Piezoelectric Aluminum Nitride Vibrating Contour-Mode MEMS Resonators , 2006, Journal of Microelectromechanical Systems.

[44]  R. E. Tallman,et al.  Effect of crystal structure and dopant concentration on the luminescence of Cr3+ in Al2O3 nanocrystals , 2005 .

[45]  A. Yariv Critical coupling and its control in optical waveguide-ring resonator systems , 2002, IEEE Photonics Technology Letters.

[46]  B. Ghyselen,et al.  The generic nature of the Smart-Cut® process for thin film transfer , 2001 .

[47]  Charles Surya,et al.  Piezoelectric coefficient of aluminum nitride and gallium nitride , 2000 .

[48]  A. Yariv Universal relations for coupling of optical power between microresonators and dielectric waveguides , 2000 .

[49]  H F Taylor,et al.  High-performance single-mode fiber-optic switch. , 1994, Optics letters.

[50]  R. French Electronic Band Structure of {Al2O3}, with Comparison to Alon and {AIN} , 1990 .

[51]  J. Schroeder Brillouin scattering and pockels coefficients in silicate glasses , 1980 .

[52]  S. Maekawa,et al.  Nonlinear optical susceptibilities of AlN film , 1977 .

[53]  Robert Puers,et al.  Low Loss CMOS-Compatible PECVD Silicon Nitride Waveguides and Grating Couplers for Blue Light Optogenetic Applications , 2016, IEEE Photonics Journal.

[54]  Michal Lipson,et al.  CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects , 2010 .