Nonlinear Optical and Electro-optical Properties of Biopolymers

Since the early studies of second harmonic generation in powders [1,2], it has been realized that the nonlinear optical properties of biologically significant organic molecules were both measurable and, in some cases like urea [3], potentially useful in quantum electronic devices. After twenty years, this potential is still only partially realized due to difficulties in the development of necessary bulk and thin film crystal growth methods for making electro-optical device grade organic materials.

[1]  S. K. Kurtz,et al.  A Powder Technique for the Evaluation of Nonlinear Optical Materials , 1968 .

[2]  H. Fröhlich,et al.  Electret Model for the Collective Behaviour of Biological Systems , 1981 .

[3]  Francisco Bezanilla,et al.  Charge Movement Associated with the Opening and Closing of the Activation Gates of the Na Channels , 1974, The Journal of general physiology.

[4]  J. Oudar,et al.  Origin of the second-order optical susceptibilities of crystalline substituted benzene , 1975 .

[5]  H. Hesse,et al.  Phase-matched second harmonic generation in urea , 1977 .

[6]  David J. Williams,et al.  Nonlinear optical properties of organic and polymeric materials , 1983 .

[7]  R Kompfner,et al.  Resonant scanning optical microscope. , 1978, Applied optics.

[8]  C. Teng,et al.  Molecular Optics: Nonlinear Optical Processes in Organic and Polymer Crystals , 1984 .

[9]  S. Shepard,et al.  Theory and experiment on optical transverse intensity bistability in the transmission through a nonlinear thin (nematic liquid crystal) film , 1984 .

[10]  C. Flytzanis Optical Nonlinearities and Photoinduced Solitons in Conjugated Polymer Crystals , 1983 .

[11]  A. F. Garito,et al.  Dispersion of the nonlinear second-order optical susceptibility of organic systems (A) , 1983 .

[12]  D A Parry,et al.  Collagen fibrils and elastic fibers in rat‐tail tendon: An electron microscopic investigation , 1978, Biopolymers.

[13]  Conformational changes of polypeptides in intense electric fields , 1973, Biopolymers.

[14]  Isaac Freund,et al.  Coherent optical harmonic generation in rat-tail tendon , 1980 .

[15]  R. Keynes,et al.  Analysis of the potential‐dependent changes in optical retardation in the squid giant axon , 1971, The Journal of physiology.

[16]  B. F. Levine,et al.  Bond-Charge Calculation of Nonlinear Optical Susceptibilities for Various Crystal Structures , 1973 .

[17]  C. T. O'konski,et al.  Electric properties of macromolecules. IX. Dipole moment, polarizability, and optical anisotropy factor of collagen in solution from electric birefringence , 1966, Biopolymers.

[18]  B. F. Levine,et al.  Second and third order hyperpolarizabilities of organic molecules , 1975 .

[19]  Richard L. Fork,et al.  Laser Stimulation of Nerve Cells in Aplysia , 1971, Science.

[20]  L. Y. Wei Dipole theory of interactions of nerve signals. , 1980, Bulletin of mathematical biology.

[21]  Kenneth D. Singer,et al.  Measurements of molecular second order optical susceptibilities using dc induced second harmonic generation , 1981 .

[22]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[23]  J. Zyss Hyperpolarizabilities of substituted conjugated molecules. I. Perturbated INDO approach to monosubstituted benzene , 1979 .

[24]  J. P. Gordon,et al.  Long‐Transient Effects in Lasers with Inserted Liquid Samples , 1965 .

[25]  C. Sauteret,et al.  The regularities observed in the second order hyperpolarizabilities of variously disubstituted benzenes , 1978 .

[26]  R. Keynes,et al.  Kinetics and steady‐state properties of the charged system controlling sodium conductance in the squid giant axon , 1974, The Journal of physiology.

[27]  E Fabre,et al.  Fourth harmonic generation of a large-aperture Nd:glass laser. , 1985, Applied optics.

[28]  C. Bethea,et al.  Ultraviolet dispersion of the donor–acceptor charge transfer contribution to the second order hyperpolarizability , 1978 .

[29]  R. S. Craxton,et al.  High efficiency frequency tripling schemes for high-power Nd: Glass lasers , 1981 .

[30]  C. Levene Book Review: Treatise on Collagen , 1969 .

[31]  J McGinness,et al.  Amorphous Semiconductor Switching in Melanins , 1974, Science.

[32]  Joseph Zyss,et al.  Relations between microscopic and macroscopic lowest-order optical nonlinearities of molecular crystals with one- or two-dimensional units , 1982 .

[33]  P. Corry,et al.  Thermal and electronic contributions to switching in melanins. , 1976, Biopolymers.

[34]  S. Lang Pyroelectricity: Occurrence in biological materials and ossible physiological implications , 1981 .

[35]  J. Dougherty,et al.  CHAPTER 38 – Methods for the Detection of Noncentrosymmetry in Solids , 1978 .

[36]  R B Corey,et al.  Two Rippled-Sheet Configurations of Polypeptide Chains, and a Note about the Pleated Sheets. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Anthony F. Garito,et al.  Origin of the nonlinear second-order optical susceptibilities of organic systems , 1979 .

[38]  I. Freund,et al.  Optical second‐harmonic scattering in rat‐tail tendon , 1981, Biopolymers.

[39]  T. K. Gustafson,et al.  THERMALLY SELF‐INDUCED PHASE MODULATION OF LASER BEAMS , 1970 .

[40]  N. Stellwagen,et al.  Structural transition produced by electric fields in aqueous sodium deoxyribonucleate. , 1965, Biophysical journal.

[41]  W. Peticolas,et al.  Optical Second-Harmonic Generation in Crystalline Amino Acids , 1965, Science.

[42]  Ray H. Baughman,et al.  Optical Nonlinearities in One-Dimensional-Conjugated Polymer Crystals. , 1976 .

[43]  C. Lee Molecular mechanism of sodium conductance changes in nerve: the role of electron transfer and energy migration. , 1983, Bulletin of mathematical biology.

[44]  M Deutsch,et al.  Second-harmonic microscopy of biological tissue. , 1986, Optics letters.

[45]  L. Y. Wei,et al.  Possible origin of action potential and birefringence change in nerve axon. , 1971, The Bulletin of mathematical biophysics.

[46]  Yoh-Han Pao,et al.  Double‐Quantum Light Scattering by Molecules , 1966 .

[47]  A. Wada Dielectric Properties of Polypeptide Solutions. II. Relation between the Electric Dipole Moment and the Molecular Weight of α Helix , 1959 .

[48]  K. Hellwege,et al.  Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology , 1967 .

[49]  E. Fukada,et al.  Denaturation of horn keratin observed by piezoelectric measurements. , 1975, Biochemical and Biophysical Research Communications - BBRC.

[50]  R. Gless,et al.  Poly(vinylamine hydrochloride). Synthesis and utilization for the preparation of water-soluble polymeric dyes , 1976 .

[51]  B. Levine Conjugated electron contributions to the second order hyperpolarizability of substituted benzene molecules , 1975 .

[52]  R. Keynes,et al.  The origin of the initial heat associated with a single impulse in mammalian non‐myelinated nerve fibres , 1968, The Journal of physiology.

[53]  W. Donaldson,et al.  Efficient phase-matched second-harmonic generation and sum-frequency mixing in urea , 1979 .

[54]  J. Oudar,et al.  Structural dependence of nonlinear-optical properties of methyl-(2,4-dinitrophenyl)-aminopropanoate crystals , 1982 .

[55]  M. E. Lacy Phonon-electron coupling as a possible transducing mechanism in bioelectronic processes involving neuromelanin. , 1984, Journal of theoretical biology.

[56]  Ronald E. Peterson,et al.  Systematic materials analysis , 1974 .

[57]  E. Menefee CHARGE SEPARATION ASSOCIATED WITH DIPOLE DISORDERING IN PROTEINS , 1974 .

[58]  A. H. Frey,et al.  Electromagnetic emission at micron wavelengths from active nerves. , 1968, Biophysical Journal.

[59]  S. Wyard Solid State Biophysics , 1969 .

[60]  David J. Williams,et al.  Characterization of quasi-crystal structure by optical frequency doubling , 1982 .

[61]  Stephen D. Jacobs,et al.  Basic properties of KDP related to the frequency conversion of 1 µm laser radiation , 1981 .