Copper hexacyanoferrate battery electrodes with long cycle life and high power.

[1]  G. Soloveichik Battery technologies for large-scale stationary energy storage. , 2011, Annual review of chemical and biomolecular engineering.

[2]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[3]  C. Lai,et al.  Improvement of the high rate capability of hierarchical structured Li4Ti5O12 induced by the pseudocapacitive effect , 2010 .

[4]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[5]  D. Braga Hydrogen Storage in Microporous Metal-Organic Frameworks , 2009 .

[6]  Gerbrand Ceder,et al.  Response to "unsupported claims of ultrafast charging of Li-ion batteries" , 2009 .

[7]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[8]  J. Tarascon,et al.  Mixed-valence li/fe-based metal-organic frameworks with both reversible redox and sorption properties. , 2007, Angewandte Chemie.

[9]  Craig M. Brown,et al.  Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites. , 2006, Journal of the American Chemical Society.

[10]  J. Eto,et al.  Understanding the cost of power interruptions to U.S. electricity consumers , 2004 .

[11]  E. Barsoukov,et al.  Comparison of kinetic properties of LiCoO2 and LiTi0.05Mg0.05Ni0.7Co0.2O2 by impedance spectroscopy , 2003 .

[12]  Michael O'Keeffe,et al.  Hydrogen Storage in Microporous Metal-Organic Frameworks , 2003, Science.

[13]  R. Mortimer,et al.  New Electrochromic Materials , 2002, Science progress.

[14]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[15]  Jean Gamby,et al.  Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors , 2001 .

[16]  F. Scholz,et al.  Lattice contractions and expansions accompanying the electrochemical conversions of Prussian blue and the reversible and irreversible insertion of rubidium and thallium ions , 1996 .

[17]  D. Stilwell,et al.  Electrochemical studies of the factors influencing the cycle stability of Prussian Blue films , 1992 .

[18]  A secondary battery composed of multilayer Prussian Blue and its reaction characteristics , 1988 .

[19]  J. McCargar,et al.  Thermodynamics of mixed-valence intercalation reactions: the electrochemical reduction of Prussian blue , 1988 .

[20]  K. Honda,et al.  Prussian Blue Containing Nafion Composite Film as Rechargeable Battery , 1987 .

[21]  E. Grabner,et al.  Hexacyanoferrate layers as electrodes for secondary cells , 1987 .

[22]  V. Neff Some Performance Characteristics of a Prussian Blue Battery , 1985 .

[23]  T. Kuwana,et al.  Electrochemical and Spectroscopic Studies of Metal Hexacyanometalate Films I . Cupric Hexacyanoferrate , 1983 .

[24]  Kingo Itaya,et al.  Prussian‐blue‐modified electrodes: An application for a stable electrochromic display device , 1982 .

[25]  Peter Fischer,et al.  Neutron diffraction study of Prussian Blue, Fe4[Fe(CN)6]3.xH2O. Location of water molecules and long-range magnetic order , 1980 .

[26]  Vernon D. Neff,et al.  Electrochemical Oxidation and Reduction of Thin Films of Prussian Blue , 1978 .

[27]  D. Schwarzenbach,et al.  The crystal structure of Prussian Blue: Fe4[Fe(CN)6]3.xH2O , 1977 .

[28]  H. Güdel,et al.  Structural chemistry of polynuclear transition metal cyanides , 1973 .

[29]  M. Robin The Color and Electronic Configurations of Prussian Blue , 1962 .