Filter models for conjunctive-disjunctive l-calculi

Abstract The distinction between the conjunctive nature of non-determinism as opposed to the disjunctive character of parallelism constitutes the motivation and the starting point of the present work. λ-calculus is extended with both a non-deterministic choice and a parallel operator; a notion of reduction is introduced, extending β-reduction of the classical calculus. We study type assignment systems for this calculus, together with a denotational semantics which is initially defined constructing a set semimodel via simple types. We enrich the type system with intersection and union types, dually reflecting the disjunctive and conjunctive behaviour of the operators, and we build a filter model. The theory of this model is compared both with a Morris-style operational semantics and with a semantics based on a notion of capabilities.

[1]  Steffen van Bakel,et al.  Complete Restrictions of the Intersection Type Discipline , 1992, Theor. Comput. Sci..

[2]  D. Walker,et al.  A Calculus of Mobile Processes, Part I , 1989 .

[3]  U. De 'liguoro,et al.  Non-deterministic Untyped -calculus , 1991 .

[4]  F. Alessi,et al.  Must and May Convergency in Concurrent Lambda-calculus , 1994 .

[5]  J. Roger Hindley,et al.  To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism , 1980 .

[6]  James H. Morris,et al.  Lambda-calculus models of programming languages. , 1969 .

[7]  Gérard Boudol Towards a Lambda-Calculus for Concurrent and Communicating Systems , 1989, TAPSOFT, Vol.1.

[8]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[9]  Steffen van Bakel,et al.  Principal Type Schemes for the Strict Type Assignment System , 1993, J. Log. Comput..

[10]  G.D. Plotkin,et al.  LCF Considered as a Programming Language , 1977, Theor. Comput. Sci..

[11]  Davide Sangiorgi The Lazy Lambda Calculus in a Concurrency Scenario , 1994, Inf. Comput..

[12]  Gordon D. Plotkin,et al.  A Powerdomain Construction , 1976, SIAM J. Comput..

[13]  Mariangiola Dezani-Ciancaglini,et al.  A filter lambda model and the completeness of type assignment , 1983, Journal of Symbolic Logic.

[14]  A. Piperno,et al.  Must Preorder in Non-deterministic Untyped -calculus , 1992 .

[15]  Matthew Hennessy A fully abstract denotational model for higher-order processes , 1993, [1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science.

[16]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[17]  Robin Milner,et al.  Functions as processes , 1990, Mathematical Structures in Computer Science.

[18]  Bent Thomsen,et al.  Calculi for higher order communicating systems , 1990 .

[19]  Samson Abramsky,et al.  Domain Theory in Logical Form , 1991, LICS.

[20]  Simona Ronchi Della Rocca,et al.  Principal Type Schemes for an Extended Type Theory , 1984, Theor. Comput. Sci..

[21]  Mariangiola Dezani-Ciancaglini,et al.  Intersection and Union Types: Syntax and Semantics , 1995, Inf. Comput..

[22]  Alberto Ferrari,et al.  Type Inference, Abstract Interpretation and Strictness Analysis , 1993, Theor. Comput. Sci..

[23]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[24]  J. Roger Hindley,et al.  The Completeness Theorem for Typing lambda-Terms , 1983, Theor. Comput. Sci..

[25]  C.-H. Luke Ong,et al.  Full Abstraction in the Lazy Lambda Calculus , 1993, Inf. Comput..

[26]  Gérard Boudol,et al.  Lambda-Calculi for (Strict) Parallel Functions , 1994, Inf. Comput..

[27]  Gordon D. Plotkin,et al.  A Semantics for Static Type Inference , 1994, Inf. Comput..

[28]  Samson Abramsky,et al.  On Semantic Foundations for Applicative Multiprogramming , 1983, ICALP.

[29]  G. Longo,et al.  Lambda-Calculus Models and Extensionality , 1980, Math. Log. Q..

[30]  C.-H. Luke Ong The Lazy Lambda Calculus : an investigation into the foundations of functional programming , 1988 .

[31]  Christopher P. Wadsworth,et al.  The Relation Between Computational and Denotational Properties for Scott's Dinfty-Models of the Lambda-Calculus , 1976, SIAM J. Comput..

[32]  C.-H. Luke Ong,et al.  Non-determinism in a functional setting , 1993, [1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science.

[33]  Matthew Hennessy,et al.  A Mathematical Semantics for a Nondeterministic Typed lambda-Calculus , 1980, Theor. Comput. Sci..

[34]  J. Krivine Lambda-calcul : types et modèles , 1990 .

[35]  Martín Abadi A Semantics for Static Type Inference in a Nondeterministic Language , 1994, Inf. Comput..

[36]  C. Böhm,et al.  λ-Calculus and Computer Science Theory , 1975, Lecture Notes in Computer Science.

[37]  Ugo de'Liguoro,et al.  Must Preorder in Non-Deterministic Untyped Lambda-Calculus , 1992, CAAP.

[38]  Michael B. Smyth Power Domains , 1978, J. Comput. Syst. Sci..