Non-mitotic Sets

We study the question of the existence of non-mitotic sets in NP. We show under various hypotheses that -- 1-tt-mitoticity and m-mitoticity differ on NP. -- T-autoreducibility and T-mitoticity differ on NP (this contrasts the situation in the recursion theoretic setting, where Ladner showed that autoreducibility and mitoticity coincide). -- 2-tt autoreducibility does not imply weak 2-tt-mitoticity. -- 1-tt-complete sets for NP are nonuniformly m-complete.

[1]  Juris Hartmanis,et al.  On Isomorphisms and Density of NP and Other Complete Sets , 1977, SIAM J. Comput..

[2]  Klaus Ambos-Spies P-mitotic sets , 1983, Logic and Machines.

[3]  John M. Hitchcock,et al.  Comparing Reductions to NP-Complete Sets , 2006, ICALP.

[4]  Dan Boneh,et al.  Rounding in lattices and its cryptographic applications , 1997, SODA '97.

[5]  Steven Homer Structural properties of nondeterministic complete sets , 1990, Proceedings Fifth Annual Structure in Complexity Theory Conference.

[6]  Klaus Ambos-Spies,et al.  Diagonalizations over Polynomial Time Computable Sets , 1987, Theor. Comput. Sci..

[7]  Manindra Agrawal,et al.  Pseudo-random generators and structure of complete degrees , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[8]  Joan Feigenbaum,et al.  On being incoherent without being very hard , 2005, computational complexity.

[9]  Harry Buhrman,et al.  P-selective self-reducibles sets: a new characterization of P , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[10]  Christian Glaßer,et al.  Splitting NP-Complete Sets , 2008, SIAM J. Comput..

[11]  Aduri Pavan,et al.  Separation of NP-completeness notions , 2001, Proceedings 16th Annual IEEE Conference on Computational Complexity.

[12]  R.E. Ladner,et al.  A Comparison of Polynomial Time Reducibilities , 1975, Theor. Comput. Sci..

[13]  Alan L. Selman,et al.  Reductions on NP and P-Selective Sets , 1982, Theor. Comput. Sci..

[14]  Alan L. Selman,et al.  P-Selective Sets, Tally Languages, and the Behavior of Polynomial Time Reducibilities on NP , 1979, ICALP.

[15]  R. Beigel Query-limited reducibilities , 1988 .

[16]  J. van Leeuwen,et al.  Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[17]  Harry Buhrman,et al.  Splittings, Robustness and Structure of Complete Sets , 1993, STACS.

[18]  Steven Homer,et al.  Structural properties of complete problems for exponential time , 1998 .

[19]  Richard E. Ladner,et al.  Mitotic recursively enumerable sets , 1973, Journal of Symbolic Logic.

[20]  Richard Beigel,et al.  Relativized Counting Classes: Relations among Thresholds, Parity, and Mods , 1991, J. Comput. Syst. Sci..

[21]  Christian Glaßer,et al.  Redundancy in Complete Sets , 2006, STACS.

[22]  José L. Balcázar,et al.  A note on genericity and bi-immunity , 1995, Proceedings of Structure in Complexity Theory. Tenth Annual IEEE Conference.

[23]  Harry Buhrman,et al.  P-Selective Self-Reducible Sets , 1996 .