Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles.
暂无分享,去创建一个
Pae C. Wu | T. Vo‐Dinh | April Brown | C. Khoury | M. Losurdo | G. Bianco | H. Everitt | Tong-Ho Kim | Yang Yang | A. Brown
[1] Pae C. Wu,et al. In situ spectroscopic ellipsometry to monitor surface plasmon resonant group-III metals deposited by molecular beam epitaxy , 2007 .
[2] Pae C. Wu,et al. Real-time plasmon resonance tuning of liquid Ga nanoparticles by in situ spectroscopic ellipsometry , 2007 .
[3] F. d’Acapito,et al. Extreme undercooling (down to 90 K) of liquid metal nanoparticles , 2006 .
[4] T. Oates,et al. Evolution of plasmon resonances during plasma deposition of silver nanoparticles , 2005 .
[5] C. Haynes,et al. Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy , 2005 .
[6] R. Lopez,et al. Rapid tarnishing of silver nanoparticles in ambient laboratory air , 2005 .
[7] N J Halas,et al. Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[8] Christy L. Haynes,et al. Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy † , 2003 .
[9] Hongxing Xu,et al. Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering , 2001 .
[10] M. Quinten,et al. Optical constants of gold and silver clusters in the spectral range between 1.5 eV and 4.5 eV , 1996 .
[11] G. Schatz,et al. An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium , 1987 .