Semi-Infinite Optimization under Convex Function Perturbations: Lipschitz Stability

This paper is devoted to the study of the stability of the solution map for the parametric convex semi-infinite optimization problem under convex function perturbations in short, PCSI. We establish sufficient conditions for the pseudo-Lipschitz property of the solution map of PCSI under perturbations of both objective function and constraint set. The main result obtained is new even when the problems under consideration reduce to linear semi-infinite optimization. Examples are given to illustrate the obtained results.

[1]  Sanjay J. Patel,et al.  Continuous Optimization , 2005, ISCA 2005.

[2]  Marco A. López,et al.  Stability Theory for Linear Inequality Systems II: Upper Semicontinuity of the Solution Set Mapping , 1997, SIAM J. Optim..

[3]  HettichR.,et al.  Semi-infinite programming , 1979 .

[4]  Marco A. López,et al.  Stability of the Feasible Set Mapping in Convex Semi-Infinite Programming , 2001 .

[5]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[6]  Marco A. López,et al.  Stability in convex semi-infinite programming and rates of convergence of optimal solutions of discretized finite subproblems , 2003 .

[7]  Marco A. López,et al.  Stability Theory for Linear Inequality Systems , 1996, SIAM J. Matrix Anal. Appl..

[8]  Nguyen Nang Dinh,et al.  Characterizations of optimal solution sets of convex infinite programs , 2008 .

[9]  F. Javier Toledo-Moreo,et al.  Lipschitz Continuity of the Optimal Value via Bounds on the Optimal Set in Linear Semi-Infinite Optimization , 2006, Math. Oper. Res..

[10]  J. Frédéric Bonnans,et al.  Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.

[11]  M. J. Cánovas,et al.  Stability of Indices in the KKT Conditions and Metric Regularity in Convex Semi-Infinite Optimization , 2008 .

[12]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[13]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[14]  Anthony V. Fiacco,et al.  Sensitivity, stability, and parametric analysis , 1984 .

[15]  Marco A. López,et al.  A note on the compactness of the index set in convex optimization. Application to metric regularity , 2010 .

[16]  Miguel A. Goberna,et al.  Sensitivity analysis in linear semi-infinite programming: Perturbing cost and right-hand-side coefficients , 2007, Eur. J. Oper. Res..

[17]  Klaus Schnatz,et al.  Continuity properties in semi-infinite parametric linear optimization , 1981 .

[18]  Jen-Chih Yao,et al.  Stability of semi-infinite vector optimization problems under functional perturbations , 2009, J. Glob. Optim..

[19]  M. A. López-Cerdá,et al.  Linear Semi-Infinite Optimization , 1998 .

[20]  Marco A. López,et al.  Metric Regularity in Convex Semi-Infinite Optimization under Canonical Perturbations , 2007, SIAM J. Optim..

[21]  Elijah Polak,et al.  Semi-Infinite Optimization , 1997 .

[22]  Jen-Chih Yao,et al.  Pseudo-Lipschitz property of linear semi-infinite vector optimization problems , 2010, Eur. J. Oper. Res..

[23]  Bruno Brosowski,et al.  Parametric semi-infinite linear programming I. continuity of the feasible set and of the optimal value , 1984 .

[24]  Marco A. López,et al.  New Farkas-type constraint qualifications in convex infinite programming , 2007 .

[25]  Miguel A. Goberna,et al.  Linear Semi-infinite Optimization: Recent Advances , 2005 .

[26]  Marco A. López,et al.  Stability and Well-Posedness in Linear Semi-Infinite Programming , 1999, SIAM J. Optim..