An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation

The perfectly matched layer (PML) absorbing boundary condition has proven to be very efficient from a numerical point of view for the elastic wave equation to absorb both body waves with nongrazing incidence and surface waves. However, at grazing incidence the classical discrete PML method suffers from large spurious reflections that make it less efficient for instance in the case of very thin mesh slices, in the case of sources located close to the edge of the mesh, and/or in the case of receivers located at very large offset. We demonstrate how to improve the PML at grazing incidence for the differential seismic wave equation based on an unsplit convolution technique. The improved PML has a cost that is similar in terms of memory storage to that of the classical PML. We illustrate the efficiency of this improved convolutional PML based on numerical benchmarks using a finite-difference method on a thin mesh slice for an isotropic material and show that results are significantly improved compared with the classical PML technique. We also show that, as the classical PML, the convolutional technique is intrinsically unstable in the case of some anisotropic materials.

[1]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[2]  J. Gillis,et al.  Methods in Computational Physics , 1964 .

[3]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[4]  Z. Alterman,et al.  Propagation of elastic waves in layered media by finite difference methods , 1968 .

[5]  John Lysmer,et al.  A Finite Element Method for Seismology , 1972 .

[6]  D. J. Andrews,et al.  From antimoment to moment: Plane-strain models of earthquakes that stop , 1975, Bulletin of the Seismological Society of America.

[7]  R. Madariaga Dynamics of an expanding circular fault , 1976, Bulletin of the Seismological Society of America.

[8]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[9]  K. Marfurt Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations , 1984 .

[10]  Moshe Reshef,et al.  A nonreflecting boundary condition for discrete acoustic and elastic wave equations , 1985 .

[11]  J. Virieux P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .

[12]  James S. Sochacki,et al.  Absorbing boundary conditions and surface waves , 1987 .

[13]  R. Stacey,et al.  Improved transparent boundary formulations for the elastic-wave equation , 1988 .

[14]  Hiroshi Kawase,et al.  Time-domain response of a semi-circular canyon for incident SV, P, and Rayleigh waves calculated by the discrete wavenumber boundary element method , 1988 .

[15]  J. Sochacki Absorbing boundary conditions for the elastic wave equations , 1988 .

[16]  D. Givoli Non-reflecting boundary conditions , 1991 .

[17]  Francisco J. Sánchez-Sesma,et al.  DIFFRACTION OF P, SV AND RAYLEIGH WAVES BY TOPOGRAPHIC FEATURES: A BOUNDARY INTEGRAL FORMULATION , 1991 .

[18]  R. Higdon Absorbing boundary conditions for elastic waves , 1991 .

[19]  Raymond J. Luebbers,et al.  FDTD for Nth-order dispersive media , 1992 .

[20]  Géza Seriani,et al.  Numerical simulation of interface waves by high‐order spectral modeling techniques , 1992 .

[21]  An Optimal Absorbing Boundary Condition For Elastic Wave Modeling , 1993 .

[22]  J. Carcione The wave equation in generalized coordinates , 1994 .

[23]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[24]  Weng Cho Chew,et al.  A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .

[25]  Ekkehart Tessmer,et al.  3-D elastic modeling with surface topography by a Chebychev spectral method , 1994 .

[26]  Anthony Skjellum,et al.  Using MPI - portable parallel programming with the message-parsing interface , 1994 .

[27]  M. Nafi Toksöz,et al.  An optimal absorbing boundary condition for elastic wave modeling , 1995 .

[28]  Raj Mittra,et al.  An efficient implementation of Berenger's perfectly matched layer (PML) for finite-difference time-domain mesh truncation , 1996 .

[29]  Qing Huo Liu,et al.  PERFECTLY MATCHED LAYERS FOR ELASTODYNAMICS: A NEW ABSORBING BOUNDARY CONDITION , 1996 .

[30]  Andreas C. Cangellaris,et al.  GT-PML: generalized theory of perfectly matched layers and its application to the reflectionless truncation of finite-difference time-domain grids , 1996, IMS 1996.

[31]  Raj Mittra,et al.  Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers , 1996 .

[32]  John B. Schneider,et al.  Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation , 1996 .

[33]  S. Gedney An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices , 1996 .

[34]  J. Bérenger Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves , 1996 .

[35]  Qing Huo Liu,et al.  The perfectly matched layer for acoustic waves in absorptive media , 1997 .

[36]  Dennis M. Sullivan,et al.  An unsplit step 3-D PML for use with the FDTD method , 1997 .

[37]  Ezio Faccioli,et al.  2d and 3D elastic wave propagation by a pseudo-spectral domain decomposition method , 1997 .

[38]  M. Carcione,et al.  Wave propagation simulation in a linear viscoacoustic medium , 1997 .

[39]  J. Hesthaven,et al.  The Analysis and Construction of Perfectly Matched Layers for Linearized Euler Equations , 2022 .

[40]  P. Monk,et al.  Optimizing the Perfectly Matched Layer , 1998 .

[41]  David R. O'Hallaron,et al.  Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers , 1998 .

[42]  Thomas L. Geers,et al.  Evaluation of the Perfectly Matched Layer for Computational Acoustics , 1998 .

[43]  R. J. Joseph,et al.  Advances in Computational Electrodynamics: The Finite - Di erence Time - Domain Method , 1998 .

[44]  Thomas Hagstrom,et al.  A formulation of asymptotic and exact boundary conditions using local operators , 1998 .

[45]  J. Desanto Mathematical and numerical aspects of wave propagation , 1998 .

[46]  Peter Monk,et al.  The Perfectly Matched Layer in Curvilinear Coordinates , 1998, SIAM J. Sci. Comput..

[47]  D. Komatitsch,et al.  The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures , 1998, Bulletin of the Seismological Society of America.

[48]  Alfio Quarteroni,et al.  Generalized Galerkin approximations of elastic waves with absorbing boundary conditions , 1998 .

[49]  Steven M. Day,et al.  Efficient simulation of constant Q using coarse-grained memory variables , 1998, Bulletin of the Seismological Society of America.

[50]  D. Gottlieb,et al.  Regular Article: Well-posed Perfectly Matched Layers for Advective Acoustics , 1999 .

[51]  T. Tsiboukis,et al.  Perfectly matched anisotropic layer for the numerical analysis of unbounded eddy-current problems , 1999 .

[52]  Fernando L. Teixeira,et al.  On causality and dynamic stability of perfectly matched layers for FDTD simulations , 1999 .

[53]  D. Komatitsch,et al.  Introduction to the spectral element method for three-dimensional seismic wave propagation , 1999 .

[54]  C. M. Rappaport,et al.  Specifying PML conductivities by considering numerical reflection dependencies , 2000 .

[55]  Stephen D. Gedney,et al.  Convolution PML (CPML): An efficient FDTD implementation of the CFS–PML for arbitrary media , 2000 .

[56]  Rohit Chandra,et al.  Parallel programming in openMP , 2000 .

[57]  D. Komatitsch,et al.  Simulation of anisotropic wave propagation based upon a spectral element method , 2000 .

[58]  M. Grote Nonreflecting Boundary Conditions for Elastodynamic Scattering , 2000 .

[59]  F. Hu A Stable, perfectly matched layer for linearized Euler equations in unslit physical variables , 2001 .

[60]  C. Tsogka,et al.  Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media , 2001 .

[61]  Peter Moczo,et al.  EFFICIENCY AND OPTIMIZATION OF THE 3-D FINITE-DIFFERENCE MODELING OF SEISMIC GROUND MOTION , 2001 .

[62]  Qing Huo Liu,et al.  The application of the perfectly matched layer in numerical modeling of wave propagation in poroelastic media , 2001 .

[63]  An efficient PML absorbing medium in FDTD simulations of acoustic scattering in lossy media , 2002, 2002 IEEE Ultrasonics Symposium, 2002. Proceedings..

[64]  Patrick Joly,et al.  Mathematical Modelling and Numerical Analysis on the Analysis of B ´ Erenger's Perfectly Matched Layers for Maxwell's Equations , 2022 .

[65]  J. Bérenger,et al.  Application of the CFS PML to the absorption of evanescent waves in waveguides , 2002, IEEE Microwave and Wireless Components Letters.

[66]  J.-P. Wrenger,et al.  Numerical reflection from FDTD-PMLs: a comparison of the split PML with the unsplit and CFS PMLs , 2002 .

[67]  Jan S. Hesthaven,et al.  Long Time Behavior of the Perfectly Matched Layer Equations in Computational Electromagnetics , 2002, J. Sci. Comput..

[68]  P. Neittaanmäki,et al.  Mathematical and Numerical Aspects of Wave Propagation WAVES 2003 , 2003 .

[69]  Gaetano Festa,et al.  PML Absorbing Boundaries , 2003 .

[70]  Thomas Hagstrom,et al.  A New Construction of Perfectly Matched Layers for Hyperbolic Systems with Applications to the Linearized Euler Equations , 2003 .

[71]  Jeroen Tromp,et al.  A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation , 2003 .

[72]  Jean-Pierre Vilotte,et al.  Solving elastodynamics in a fluid-solid heterogeneous sphere: a parallel spectral element approximation on non-conforming grids , 2003 .

[73]  Patrick Joly,et al.  Stability of perfectly matched layers, group velocities and anisotropic waves , 2003 .

[74]  Tsili Wang,et al.  Finite-difference modeling of elastic wave propagation: A nonsplitting perfectly matched layer approach , 2003 .

[75]  A. Rahmouni Un modèle PML bien posé pour l'élastodynamique anisotrope , 2004 .

[76]  A. Chopra,et al.  Perfectly matched layers for transient elastodynamics of unbounded domains , 2004 .

[77]  S. Gedney,et al.  On the long-time behavior of unsplit perfectly matched layers , 2004, IEEE Transactions on Antennas and Propagation.

[78]  J. Vilotte,et al.  The Newmark scheme as velocity–stress time-staggering: an efficient PML implementation for spectral element simulations of elastodynamics , 2005 .

[79]  É. Delavaud,et al.  Interaction between surface waves and absorbing boundaries for wave propagation in geological basins: 2D numerical simulations , 2005 .

[80]  D. She,et al.  An eigenvalue decomposition method to construct absorbing boundary conditions for acoustic and elastic wave equations , 2005 .

[81]  Gary Cohen,et al.  Mixed Spectral Finite Elements for the Linear Elasticity System in Unbounded Domains , 2005, SIAM J. Sci. Comput..

[82]  Shuo Ma,et al.  Modeling of the Perfectly Matched Layer Absorbing Boundaries and Intrinsic Attenuation in Explicit Finite-Element Methods , 2006 .

[83]  M. Dumbser,et al.  An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes — II. The three-dimensional isotropic case , 2006 .

[84]  Gunilla Kreiss,et al.  A new absorbing layer for elastic waves , 2006, J. Comput. Phys..

[85]  M. Guddati,et al.  Continued fraction absorbing boundary conditions for convex polygonal domains , 2006 .

[86]  Julien Diaz,et al.  A time domain analysis of PML models in acoustics , 2006 .

[87]  Mathieu Fontes Propriétés mathématiques de modèles géophysiques pour l'absorption des ondes : Application aux conditions de bords absorbants , 2006 .

[88]  Antonios Giannopoulos,et al.  Complex frequency shifted convolution PML for FDTD modelling of elastic waves , 2007 .

[89]  A. Giannopoulos,et al.  A nonsplit complex frequency-shifted PML based on recursive integration for FDTD modeling of elastic waves , 2007 .

[90]  Alfredo Bermúdez,et al.  An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems , 2007, J. Comput. Phys..