Ultrafast THz probing of nonlocal orbital current in transverse multilayer metallic heterostructures

THz generation from femtosecond photoexcited spintronic heterostructures has recently become a versatile tool for investigating ultrafast spin-transport and transient charge-current in a non-contact and non-invasive manner. The same from the orbital effects is still in the primitive stage. Here, we experimentally demonstrate orbital-to-charge current conversion in metallic heterostructures, consisting of a ferromagnetic layer adjacent to either a light or a heavy metal layer, through detection of the emitted THz pulses. Temperature-dependent experiments help to disentangle the orbital and spin components that are manifested in the respective Hall-conductivities, contributing to THz emission. NiFe/Nb shows the strongest inverse orbital Hall effect with an experimentally extracted value of effective Hall-conductivity, \sigma_SOH^int^eff ~ 280 {\Omega}^(-1){cm}^(-1), while CoFeB/Pt shows maximum contribution from the inverse spin Hall effect. In addition, we observe nearly ten-fold enhancement in the THz emission due to pronounced orbital-transport in W-insertion heavy metal layer in CoFeB/W/Ta heterostructure as compared to the CoFeB/Ta bilayer counterpart.

[1]  Y. Mokrousov,et al.  Inverse Orbital Torque via Spin-Orbital Intertwined States , 2023, Physical Review Applied.

[2]  F. Freimuth,et al.  Time-domain observation of ballistic orbital-angular-momentum currents with giant relaxation length in tungsten , 2023, Nature Nanotechnology.

[3]  Changjun Jiang,et al.  Giant efficiency of long-range orbital torque in Co/Nb bilayers , 2022, Physical Review B.

[4]  Y. Mokrousov,et al.  Detection of long-range orbital-Hall torques , 2022, Physical Review B.

[5]  N. K. Gupta,et al.  Spin Pumping through Different Spin-Orbit Coupling Interfaces in β-W/Interlayer/Co2FeAl Heterostructures. , 2022, ACS applied materials & interfaces.

[6]  A. Fert,et al.  Inverse Orbital Hall Effect Discovered from Light-Induced Terahertz Emission , 2022, 2208.01866.

[7]  Meilin Liu,et al.  Enhancing the Spin-Orbit Torque Efficiency by the Insertion of a Sub-nanometer β-W Layer. , 2022, ACS nano.

[8]  G. Sala,et al.  Giant orbital Hall effect and orbital-to-spin conversion in 3d, 5d, and 4f metallic heterostructures , 2022, 2207.06347.

[9]  S. Mangin,et al.  Is terahertz emission a good probe of the spin current attenuation length? , 2022, Applied Physics Letters.

[10]  Sandeep Kumar,et al.  Large interfacial contribution to ultrafast THz emission by inverse spin Hall effect in CoFeB/Ta heterostructure , 2022, iScience.

[11]  Sandeep Kumar,et al.  Ultrafast light-induced THz switching in exchange-biased Fe/Pt spintronic heterostructure , 2022, Applied Physics Letters.

[12]  P. Oppeneer,et al.  First-principles theory of intrinsic spin and orbital Hall and Nernst effects in metallic monoatomic crystals , 2022, Physical Review Materials.

[13]  Y. Mokrousov,et al.  Observation of long-range orbital transport and giant orbital torque , 2022, Communications Physics.

[14]  Hyun-Woo Lee,et al.  Negative intrinsic orbital Hall effect in group XIV materials , 2021, Physical Review B.

[15]  Hyun-Woo Lee,et al.  Observation of the orbital Hall effect in a light metal Ti , 2021, Nature.

[16]  Y. Kumar,et al.  Optical damage limit of efficient spintronic THz emitters , 2021, iScience.

[17]  R. Ji,et al.  Spintronic terahertz emitters: Status and prospects from a materials perspective , 2021, APL Materials.

[18]  S. Parkin,et al.  Atomic Scale Control of Spin Current Transmission at Interfaces , 2021, Nano letters.

[19]  Y. Mokrousov,et al.  Orbitronics: Orbital currents in solids , 2021, EPL (Europhysics Letters).

[20]  E. Chia,et al.  Studying spin–charge conversion using terahertz pulses , 2021, APL Materials.

[21]  N. Lee,et al.  Efficient conversion of orbital Hall current to spin current for spin-orbit torque switching , 2021, Communications Physics.

[22]  Byong‐Guk Park,et al.  Orbital torque in magnetic bilayers , 2021, Nature Communications.

[23]  P. Brouwer,et al.  Laser-induced terahertz spin transport in magnetic nanostructures arises from the same force as ultrafast demagnetization , 2021, Physical Review B.

[24]  H. Jaffrès,et al.  Spin Injection Efficiency at Metallic Interfaces Probed by THz Emission Spectroscopy , 2021, Advanced Optical Materials.

[25]  R. Rawat,et al.  Ultrafast Photo‐Thermal Switching of Terahertz Spin Currents , 2021, Advanced Functional Materials.

[26]  S. Bhowal,et al.  Effect of the inversion symmetry breaking on the orbital Hall effect: A model study , 2021 .

[27]  I. Mertig,et al.  Terahertz Spin‐to‐Charge Conversion by Interfacial Skew Scattering in Metallic Bilayers , 2021, Advanced materials.

[28]  A. Nivedan,et al.  THz pulses from optically excited Fe-, Pt- and Ta-based spintronic heterostructures , 2021, Pramana.

[29]  E. Papaioannou,et al.  THz spintronic emitters: a review on achievements and future challenges , 2020, Nanophotonics.

[30]  A. Fert,et al.  Ultrafast spin-currents and charge conversion at 3d-5d interfaces probed by time-domain terahertz spectroscopy , 2020, 2012.06900.

[31]  B. Jin,et al.  Ultrafast spin current generated from an antiferromagnet , 2020, Nature Physics.

[32]  M. Nardelli,et al.  Disentangling Orbital and Valley Hall Effects in Bilayers of Transition Metal Dichalcogenides. , 2020, Physical review letters.

[33]  D. Stewart,et al.  Impact of impurities on the spin Hall conductivity in β -W , 2020 .

[34]  B. Diény,et al.  Review on spintronics: Principles and device applications , 2020, Journal of Magnetism and Magnetic Materials.

[35]  Christoph Adelmann,et al.  Opportunities and challenges for spintronics in the microelectronics industry , 2020, Nature Electronics.

[36]  E. Fullerton,et al.  Temperature dependent inverse spin Hall effect in Co/Pt spintronic emitters , 2020, Applied Physics Letters.

[37]  F. Freimuth,et al.  Theory of Current-Induced Angular Momentum Transfer Dynamics in Spin-Orbit Coupled Systems. , 2020, Physical review research.

[38]  S. Bhowal,et al.  Intrinsic orbital moment and prediction of a large orbital Hall effect in two-dimensional transition metal dichalcogenides , 2020, Physical Review B.

[39]  Ming Liu,et al.  Enhancement of the Spin-Mixing Conductance in Co - Fe - B/W Bilayers by Interface Engineering , 2019 .

[40]  S. Eisebitt,et al.  Angular Momentum Flow During Ultrafast Demagnetization of a Ferrimagnet. , 2019, Physical review letters.

[41]  Hyun-Woo Lee,et al.  Orbital torque: Torque generation by orbital current injection , 2019, Physical Review Research.

[42]  Hyun-Woo Lee,et al.  Gigantic intrinsic orbital Hall effects in weakly spin-orbit coupled metals , 2018, Physical Review B.

[43]  Akash Kumar,et al.  Large spin current generation by the spin Hall effect in mixed crystalline phase Ta thin films , 2018, Physical Review B.

[44]  Wei Zhang,et al.  Control of Terahertz Emission by Ultrafast Spin-Charge Current Conversion at Rashba Interfaces. , 2018, Physical review letters.

[45]  A. Chuvilin,et al.  Unveiling the mechanisms of the spin Hall effect in Ta , 2018, Physical Review B.

[46]  G. Jakob,et al.  Terahertz spectroscopy for all-optical spintronic characterization of the spin-Hall-effect metals Pt, W and Cu80Ir20 , 2018, Journal of Physics D: Applied Physics.

[47]  Y. Z. Wu,et al.  Broadband Terahertz Generation via the Interface Inverse Rashba-Edelstein Effect. , 2018, Physical review letters.

[48]  Hyun-Woo Lee,et al.  Intrinsic Spin and Orbital Hall Effects from Orbital Texture. , 2018, Physical review letters.

[49]  E. Papaioannou,et al.  Optimized Spintronic Terahertz Emitters Based on Epitaxial Grown Fe/Pt Layer Structures , 2017, Scientific Reports.

[50]  G. Jakob,et al.  Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV cm−1 from a metallic spintronic emitter , 2017, 1703.09970.

[51]  Ronger Zheng,et al.  Powerful and Tunable THz Emitters Based on the Fe/Pt Magnetic Heterostructure , 2016, 1607.02814.

[52]  F. Casanova,et al.  Tuning the spin Hall effect of Pt from the moderately dirty to the superclean regime , 2016, 1603.04999.

[53]  Shiming Zhou,et al.  Effect of band filling on anomalous Hall conductivity and magneto-crystalline anisotropy in NiFe epitaxial thin films , 2016 .

[54]  J. Sinova,et al.  Spin Hall effects , 2015 .

[55]  M. Klaui,et al.  Efficient metallic spintronic emitters of ultrabroadband terahertz radiation , 2015, Nature Photonics.

[56]  R. Duine,et al.  New perspectives for Rashba spin-orbit coupling. , 2015, Nature materials.

[57]  F. Freimuth,et al.  Terahertz spin current pulses controlled by magnetic heterostructures. , 2012, Nature nanotechnology.

[58]  Albert Fert,et al.  Spin Hall effect induced by resonant scattering on impurities in metals. , 2010, Physical review letters.

[59]  J. Bigot,et al.  Distinguishing the ultrafast dynamics of spin and orbital moments in solids , 2010, Nature.

[60]  H. A. Durr,et al.  Femtosecond x-ray absorption spectroscopy of spin and orbital angular momentum in photoexcited Ni films during ultrafast demagnetization , 2010, 1002.1656.

[61]  D. Hirashima,et al.  Giant orbital Hall effect in transition metals: origin of large spin and anomalous Hall effects. , 2008, Physical review letters.

[62]  P. Visscher,et al.  Thermal stability of graded exchange spring media under the influence of external fields , 2008 .

[63]  M. Naito,et al.  Intrinsic spin Hall effect and orbital Hall effect in 4 d and 5 d transition metals , 2007, 0711.1263.

[64]  W. Eberhardt,et al.  Femtosecond modification of electron localization and transfer of angular momentum in nickel. , 2007, Nature materials.

[65]  S. Maekawa,et al.  Room-temperature reversible spin Hall effect. , 2006, Physical review letters.

[66]  Shou-Cheng Zhang,et al.  Orbitronics: the intrinsic orbital current in p-doped silicon. , 2005, Physical review letters.

[67]  S. Zhang,et al.  Intrinsic spin and orbital angular momentum Hall effect. , 2004, Physical review letters.

[68]  J. Hirsch Spin Hall Effect , 1999, cond-mat/9906160.

[69]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[70]  V. M. Edelstein Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems , 1990 .