Transformations for Piola-mapped elements

The Arnold–Winther element successfully discretizes the Hellinger–Reissner variational formulation of linear elasticity; its development was one of the key early breakthroughs of the finite element exterior calculus. Despite its great utility, it is not available in standard finite element software, because its degrees of freedom are not preserved under the standard Piola push-forward. In this work we apply the novel transformation theory recently developed by Kirby [SMAI-JCM, 4:197–224, 2018] to devise the correct map for transforming the basis on a reference cell to a generic physical triangle. This enables the use of the Arnold–Winther elements, both conforming and nonconforming, in the widelyused Firedrake finite element software, composing with its advanced symbolic code generation and geometric multigrid functionality. Similar results also enable the correct transformation of the Mardal– Tai–Winther element for incompressible fluid flow. We present numerical results for both elements, verifying the correctness of our theory.

[1]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[2]  C. Carstensen,et al.  L2 best approximation of the elastic stress in the Arnold–Winther FEM , 2016 .

[3]  David A. Ham,et al.  Exposing and exploiting structure: optimal code generation for high-order finite element methods , 2017, ArXiv.

[4]  Erik Burman,et al.  Two mixed finite element formulations for the weak imposition of the Neumann boundary conditions for the Darcy flow , 2021, J. Num. Math..

[5]  Douglas N. Arnold,et al.  Mixed finite element methods for linear elasticity with weakly imposed symmetry , 2007, Math. Comput..

[6]  Jinchao Xu,et al.  An Extended Galerkin Analysis for Linear Elasticity with Strongly Symmetric Stress Tensor , 2020, ArXiv.

[7]  J. Schöberl,et al.  TANGENTIAL-DISPLACEMENT AND NORMAL–NORMAL-STRESS CONTINUOUS MIXED FINITE ELEMENTS FOR ELASTICITY , 2011 .

[8]  Joseph E. Pasciak,et al.  A Multigrid Preconditioner for the Mixed Formulation of Linear Plane Elasticity , 2006, SIAM J. Numer. Anal..

[9]  Kent-André Mardal,et al.  On the singular Neumann problem in linear elasticity , 2016, Numer. Linear Algebra Appl..

[10]  Yanqiu Wang,et al.  Preconditioning for the mixed formulation of linear plane elasticity , 2005 .

[11]  Robust multigrid methods for nearly incompressible elasticity using macro elements , 2020, ArXiv.

[12]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[13]  Walter Zulehner,et al.  The divDiv-complex and applications to biharmonic equations , 2018, Applicable Analysis.

[14]  R. Kirby A general approach to transforming finite elements , 2017, 1706.09017.

[15]  Andrew T. T. McRae,et al.  Firedrake: automating the finite element method by composing abstractions , 2015, ACM Trans. Math. Softw..

[16]  Matthew G. Knepley,et al.  PCPATCH , 2019, ACM Trans. Math. Softw..

[17]  Robert C. Kirby,et al.  Algorithm 839: FIAT, a new paradigm for computing finite element basis functions , 2004, TOMS.

[18]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[19]  P. Farrell,et al.  Augmented Lagrangian preconditioners for the Oseen–Frank model of nematic and cholesteric liquid crystals , 2020, BIT Numerical Mathematics.

[20]  Volker John,et al.  On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows , 2015, SIAM Rev..

[21]  Xue-Cheng Tai,et al.  A Robust Finite Element Method for Darcy-Stokes Flow , 2002, SIAM J. Numer. Anal..

[22]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[23]  Lawrence Mitchell,et al.  A Reynolds-robust preconditioner for the Scott-Vogelius discretization of the stationary incompressible Navier-Stokes equations , 2020, The SMAI journal of computational mathematics.

[24]  D. Arnold,et al.  Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.

[25]  Anders Logg,et al.  Unified form language: A domain-specific language for weak formulations of partial differential equations , 2012, TOMS.

[26]  Douglas N. Arnold,et al.  Geometric decompositions and local bases for spaces of finite element differential forms , 2008, 0806.1255.

[27]  Douglas N. Arnold,et al.  Mixed finite elements for elasticity , 2002, Numerische Mathematik.

[28]  Jan Reininghaus,et al.  The Arnold–Winther mixed FEM in linear elasticity. Part I: Implementation and numerical verification☆ , 2008 .

[29]  Alexandre Ern,et al.  Stress and flux reconstruction in Biot's poro-elasticity problem with application to a posteriori error analysis , 2017, Comput. Math. Appl..

[30]  Lawrence Mitchell,et al.  TSFC: a structure-preserving form compiler , 2017, SIAM J. Sci. Comput..

[31]  Luis F. Gatica,et al.  Mixed Kirchhoff stress–displacement–pressure formulations for incompressible hyperelasticity , 2021 .

[32]  L. D. Marini,et al.  Two families of mixed finite elements for second order elliptic problems , 1985 .

[33]  A. Wathen,et al.  Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners , 1994 .

[34]  Rolf Stenberg,et al.  Mixed Finite Element Methods for Problems with Robin Boundary Conditions , 2011, SIAM J. Numer. Anal..

[35]  C. Carstensen,et al.  Computational competition of symmetric mixed FEM in linear elasticity , 2011 .

[36]  Douglas N. Arnold,et al.  Finite elements for symmetric tensors in three dimensions , 2008, Math. Comput..

[37]  M. Fortin,et al.  E cient rectangular mixed fi-nite elements in two and three space variables , 1987 .

[38]  Benjamin Müller,et al.  A First-Order System Least Squares Method for Hyperelasticity , 2014, SIAM J. Sci. Comput..

[39]  Claes Johnson,et al.  On the convergence of a mixed finite-element method for plate bending problems , 1973 .

[40]  Jun Hu,et al.  Nodal finite element de Rham complexes , 2018, Numerische Mathematik.

[41]  Stéphane Bordas,et al.  Simple and extensible plate and shell finite element models through automatic code generation tools , 2018, Computers & Structures.

[42]  D. Arnold,et al.  NONCONFORMING TETRAHEDRAL MIXED FINITE ELEMENTS FOR ELASTICITY , 2012, 1210.6256.

[43]  T. Katsaounis Advanced Topics in Computational Partial Differential Equations: Numerical Methods and Diffpack Programming , 2005 .

[44]  B. I. WOHLMUTH,et al.  AN A POSTERIORI ERROR ESTIMATOR FOR THE LAMÉ EQUATION BASED ON H ( DIV )-CONFORMING STRESS APPROXIMATIONS , .

[45]  Lawrence Mitchell,et al.  An augmented Lagrangian preconditioner for the magnetohydrodynamics equations at high Reynolds and coupling numbers , 2021, ArXiv.

[46]  Shangyou Zhang,et al.  A family of conforming mixed finite elements for linear elasticity on triangular grids , 2014, 1406.7457.

[47]  Son-Young Yi Nonconforming mixed finite element methods for linear elasticity using rectangular elements in two and three dimensions , 2005 .

[48]  Susanne C. Brenner,et al.  Multigrid methods for parameter dependent problems , 1996 .

[49]  Joscha Gedicke,et al.  Arnold-Winther Mixed Finite Elements for Stokes Eigenvalue Problems , 2018, SIAM J. Sci. Comput..

[50]  Douglas N. Arnold,et al.  Multigrid in H (div) and H (curl) , 2000, Numerische Mathematik.

[51]  Jun-Jue Hu Finite Element Approximations of Symmetric Tensors on Simplicial Grids in R n : The Higher Order Case , 2015 .

[52]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[53]  D. Arnold,et al.  NONCONFORMING MIXED ELEMENTS FOR ELASTICITY , 2003 .

[54]  Shuonan Wu,et al.  Nonconforming finite element spaces for 2mth order partial differential equations on ℝn simplicial grids when m=n+1 , 2018, Math. Comput..

[55]  Xue-Cheng Tai,et al.  A robust nonconforming H2-element , 2001, Math. Comput..

[56]  Kent-André Mardal,et al.  An observation on Korn's inequality for nonconforming finite element methods , 2005, Math. Comput..

[57]  Lawrence Mitchell,et al.  An Augmented Lagrangian Preconditioner for the 3D Stationary Incompressible Navier-Stokes Equations at High Reynolds Number , 2018, SIAM J. Sci. Comput..

[58]  P. A. Gazca-Orozco,et al.  An augmented Lagrangian preconditioner for implicitly-constituted non-Newtonian incompressible flow , 2020, SIAM J. Sci. Comput..

[59]  Trygve K. Karper,et al.  Unified finite element discretizations of coupled Darcy–Stokes flow , 2009 .

[60]  T. Frankel The geometry of physics : an introduction , 2004 .

[61]  M. Rognes,et al.  Efficient Assembly of H(div) and H(curl) Conforming Finite Elements , 2012, 1205.3085.

[62]  Jun-Jue Hu,et al.  Finite element approximations of symmetric tensors on simplicial grids in Rn: the lower order case , 2014 .

[63]  J. Douglas,et al.  PEERS: A new mixed finite element for plane elasticity , 1984 .

[64]  Jeonghun J. Lee Robust three-field finite element methods for Biot’s consolidation model in poroelasticity , 2018 .

[65]  Jun Hu,et al.  A New Family of Efficient Conforming Mixed Finite Elements on Both Rectangular and Cuboid Meshes for Linear Elasticity in the Symmetric Formulation , 2013, SIAM J. Numer. Anal..

[66]  Gerhard Starke,et al.  First-Order System Least-Squares for Darcy-Stokes Flow , 2007, SIAM J. Numer. Anal..

[67]  Barry F. Smith,et al.  PETSc Users Manual , 2019 .

[68]  Leonard R. Herrmann,et al.  Finite-Element Bending Analysis for Plates , 1967 .

[69]  Sheehan Olver,et al.  Orthogonal Structure on a Wedge and on the Boundary of a Square , 2017, Found. Comput. Math..

[70]  Lawrence Mitchell,et al.  Code Generation for Generally Mapped Finite Elements , 2018, ACM Trans. Math. Softw..

[71]  Weifeng Qiu,et al.  A locking-free $$hp$$ DPG method for linear elasticity with symmetric stresses , 2012, Numerische Mathematik.

[72]  D. Arnold Finite Element Exterior Calculus , 2018 .

[73]  Lawrence Mitchell,et al.  Solver Composition Across the PDE/Linear Algebra Barrier , 2017, SIAM J. Sci. Comput..

[74]  Xuecheng Tai,et al.  A discrete de Rham complex with enhanced smoothness , 2006 .

[75]  Maxim A. Olshanskii,et al.  An Augmented Lagrangian-Based Approach to the Oseen Problem , 2006, SIAM J. Sci. Comput..

[76]  A. Goriely . Numerical simulation of shear and the Poynting effects by the finite element method: An applicatio , 2013 .