Dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) of atherosclerotic plaque angiogenesis

[1]  Cory Swingen,et al.  MRI measurements of carotid plaque in the atherosclerosis risk in communities (ARIC) study: Methods, reliability and descriptive statistics , 2010, Journal of magnetic resonance imaging : JMRI.

[2]  Bridget B. Kelly,et al.  Epidemiology of Cardiovascular Disease , 2010 .

[3]  J. Ambrose,et al.  Vulnerable plaques and patients: improving prediction of future coronary events. , 2010, The American journal of medicine.

[4]  V. Fuster,et al.  Increased Neovascularization in Advanced Lipid-Rich Atherosclerotic Lesions Detected by Gadofluorine-M–Enhanced MRI: Implications for Plaque Vulnerability , 2009, Circulation. Cardiovascular imaging.

[5]  W. Kerwin,et al.  Contrast‐enhanced MRI of carotid atherosclerosis: Dependence on contrast agent , 2009, Journal of magnetic resonance imaging : JMRI.

[6]  S. Caruthers,et al.  Anti-angiogenic perfluorocarbon nanoparticles for diagnosis and treatment of atherosclerosis. , 2009, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[7]  M. Daemen,et al.  Novel concepts in atherogenesis: angiogenesis and hypoxia in atherosclerosis , 2009, The Journal of pathology.

[8]  J. V. van Engelshoven,et al.  Atherosclerosis: contrast-enhanced MR imaging of vessel wall in rabbit model--comparison of gadofosveset and gadopentetate dimeglumine. , 2009, Radiology.

[9]  Thomas E Yankeelov,et al.  Dynamic Contrast Enhanced Magnetic Resonance Imaging in Oncology: Theory, Data Acquisition, Analysis, and Examples. , 2007, Current medical imaging reviews.

[10]  Fei Liu,et al.  Signal features of the atherosclerotic plaque at 3.0 Tesla versus 1.5 Tesla: Impact on automatic classification , 2008, Journal of magnetic resonance imaging : JMRI.

[11]  Shelton D Caruthers,et al.  Antiangiogenic synergism of integrin-targeted fumagillin nanoparticles and atorvastatin in atherosclerosis. , 2008, JACC. Cardiovascular imaging.

[12]  V. Fuster,et al.  Detection of Neovessels in Atherosclerotic Plaques of Rabbits Using Dynamic Contrast Enhanced MRI and 18F-FDG PET , 2008, Arteriosclerosis, thrombosis, and vascular biology.

[13]  Z. Fayad,et al.  Evaluation of neovessels in atherosclerotic plaques of rabbits using an albumin‐binding intravascular contrast agent and MRI , 2008, Journal of magnetic resonance imaging : JMRI.

[14]  Sameer Bansilal,et al.  Atherosclerosis Inflammation Imaging with 18F-FDG PET: Carotid, Iliac, and Femoral Uptake Reproducibility, Quantification Methods, and Recommendations , 2008, Journal of Nuclear Medicine.

[15]  A Z Faranesh,et al.  Incorporating a vascular term into a reference region model for the analysis of DCE-MRI data: a simulation study , 2008, Physics in medicine and biology.

[16]  W S Kerwin,et al.  MR imaging of adventitial vasa vasorum in carotid atherosclerosis , 2008, Magnetic resonance in medicine.

[17]  Thomas E Yankeelov,et al.  Incorporating the effects of transcytolemmal water exchange in a reference region model for DCE‐MRI analysis: Theory, simulations, and experimental results , 2008, Magnetic resonance in medicine.

[18]  P. Libby,et al.  Improved characterization of atherosclerotic plaques by gadolinium contrast during intravascular magnetic resonance imaging of human arteries. , 2008, Atherosclerosis.

[19]  Jie Zheng,et al.  Targeted Contrast Agent Helps to Monitor Advanced Plaque During Progression: A Magnetic Resonance Imaging Study in Rabbits , 2008, Investigative radiology.

[20]  Jacques Felblinger,et al.  High‐resolution contrast‐enhanced MRI of atherosclerosis with digital cardiac and respiratory gating in mice , 2007, Magnetic resonance in medicine.

[21]  V. Fuster,et al.  (18)Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: implications for atherosclerosis therapy trials. , 2007, Journal of the American College of Cardiology.

[22]  J. Machac,et al.  Simvastatin and plaque inflammation. , 2007, Journal of the American College of Cardiology.

[23]  K. Kataoka,et al.  A novel contrast medium detects increased permeability of rat injured carotid arteries in magnetic resonance T2 mapping imaging. , 2007, Journal of atherosclerosis and thrombosis.

[24]  Thomas E Yankeelov,et al.  Comparison of a reference region model with direct measurement of an AIF in the analysis of DCE‐MRI data , 2007, Magnetic resonance in medicine.

[25]  A. Naylor,et al.  Carotid plaque instability and ischemic symptoms are linked to immaturity of microvessels within plaques. , 2007, Journal of vascular surgery.

[26]  Chun Yuan,et al.  Inflammation in carotid atherosclerotic plaque: a dynamic contrast-enhanced MR imaging study. , 2006, Radiology.

[27]  D. D. Billheimer,et al.  Repeatability of a reference region model for analysis of murine DCE‐MRI data at 7T , 2006, Journal of magnetic resonance imaging : JMRI.

[28]  Jeffrey L Duerk,et al.  Model‐free parameters from dynamic contrast‐enhanced‐MRI: Sensitivity to EES volume fraction and bolus timing , 2006, Journal of magnetic resonance imaging : JMRI.

[29]  Samuel A. Wickline,et al.  Endothelial &agr;&ngr;&bgr;3 Integrin–Targeted Fumagillin Nanoparticles Inhibit Angiogenesis in Atherosclerosis , 2006 .

[30]  V. Fuster,et al.  Neovascularization in human atherosclerosis. , 2006, Current molecular medicine.

[31]  D J Collins,et al.  Evaluation of response to treatment using DCE-MRI: the relationship between initial area under the gadolinium curve (IAUGC) and quantitative pharmacokinetic analysis , 2006, Physics in medicine and biology.

[32]  P. Weissberg,et al.  Radionuclide imaging for the detection of inflammation in vulnerable plaques. , 2006, Journal of the American College of Cardiology.

[33]  Debiao Li,et al.  Gadofluorine-Enhanced Magnetic Resonance Imaging of Carotid Atherosclerosis in Yucatan Miniswine , 2006, Investigative radiology.

[34]  Shelton D Caruthers,et al.  Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. , 2006, Arteriosclerosis, thrombosis, and vascular biology.

[35]  Chun Yuan,et al.  In Vivo Quantitative Measurement of Intact Fibrous Cap and Lipid-Rich Necrotic Core Size in Atherosclerotic Carotid Plaque: Comparison of High-Resolution, Contrast-Enhanced Magnetic Resonance Imaging and Histology , 2005, Circulation.

[36]  Zahi A Fayad,et al.  Atherothrombosis and high-risk plaque: Part II: approaches by noninvasive computed tomographic/magnetic resonance imaging. , 2005, Journal of the American College of Cardiology.

[37]  Zahi A Fayad,et al.  Atherothrombosis and high-risk plaque: part I: evolving concepts. , 2005, Journal of the American College of Cardiology.

[38]  W. Kerwin,et al.  Feasibility of in vivo, multicontrast‐weighted MR imaging of carotid atherosclerosis for multicenter studies , 2005, Journal of magnetic resonance imaging : JMRI.

[39]  J. Gore,et al.  Quantitative pharmacokinetic analysis of DCE-MRI data without an arterial input function: a reference region model. , 2005, Magnetic resonance imaging.

[40]  B. Astor,et al.  Wash‐in kinetics for gadolinium‐enhanced magnetic resonance imaging of carotid atheroma , 2005, Journal of magnetic resonance imaging : JMRI.

[41]  P. Weissberg,et al.  Imaging of atherosclerosis -- can we predict plaque rupture? , 2005, Trends in cardiovascular medicine.

[42]  W. Kerwin Imaging of plaque cellular activity with contrast enhanced MRI. , 2005, Studies in health technology and informatics.

[43]  A. Sulaiman,et al.  Contrast enhancement in atherosclerosis development in a mouse model: in vivo results at 2 Tesla , 2004, Magnetic Resonance Materials in Physics, Biology and Medicine.

[44]  P. Weissberg,et al.  Molecular and metabolic imaging of atherosclerosis. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[45]  Juan J. Badimon,et al.  Plaque Neovascularization Is Increased in Ruptured Atherosclerotic Lesions of Human Aorta: Implications for Plaque Vulnerability , 2004, Circulation.

[46]  V. Fuster,et al.  Lipid-Rich Atherosclerotic Plaques Detected by Gadofluorine-Enhanced In Vivo Magnetic Resonance Imaging , 2004, Circulation.

[47]  Samuel A. Wickline,et al.  Molecular Imaging of Angiogenesis in Early-Stage Atherosclerosis With &agr;v&bgr;3-Integrin–Targeted Nanoparticles , 2003 .

[48]  J. Debatin,et al.  Detection of Atherosclerotic Plaque With Gadofluorine-Enhanced Magnetic Resonance Imaging , 2003, Circulation.

[49]  Renu Virmani,et al.  Pathology of the thin-cap fibroatheroma: a type of vulnerable plaque. , 2003, Journal of interventional cardiology.

[50]  M. E. Kooi,et al.  Accumulation of Ultrasmall Superparamagnetic Particles of Iron Oxide in Human Atherosclerotic Plaques Can Be Detected by In Vivo Magnetic Resonance Imaging , 2003, Circulation.

[51]  Chun Yuan,et al.  Quantitative Magnetic Resonance Imaging Analysis of Neovasculature Volume in Carotid Atherosclerotic Plaque , 2003, Circulation.

[52]  Shelton D Caruthers,et al.  Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. , 2003, Circulation.

[53]  P. Libby Inflammation in atherosclerosis , 2002, Nature.

[54]  A. Padhani Dynamic contrast‐enhanced MRI in clinical oncology: Current status and future directions , 2002, Journal of magnetic resonance imaging : JMRI.

[55]  J. Pickard,et al.  Imaging Atherosclerotic Plaque Inflammation With [18F]-Fluorodeoxyglucose Positron Emission Tomography , 2002, Circulation.

[56]  W S Kerwin,et al.  Noise and motion correction in dynamic contrast‐enhanced MRI for analysis of atherosclerotic lesions , 2002, Magnetic resonance in medicine.

[57]  V. Fuster,et al.  Intimomedial Interface Damage and Adventitial Inflammation Is Increased Beneath Disrupted Atherosclerosis in the Aorta: Implications for Plaque Vulnerability , 2002, Circulation.

[58]  R. Balaban,et al.  Carotid artery atherosclerosis: in vivo morphologic characterization with gadolinium-enhanced double-oblique MR imaging initial results. , 2002, Radiology.

[59]  W. Kerwin,et al.  Contrast‐enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization , 2002, Journal of magnetic resonance imaging : JMRI.

[60]  J. Debatin,et al.  Magnetic Resonance Imaging of Atherosclerotic Plaque With Ultrasmall Superparamagnetic Particles of Iron Oxide in Hyperlipidemic Rabbits , 2001, Circulation.

[61]  M. Knopp,et al.  Estimating kinetic parameters from dynamic contrast‐enhanced t1‐weighted MRI of a diffusable tracer: Standardized quantities and symbols , 1999, Journal of magnetic resonance imaging : JMRI.

[62]  Yu-Chung N. Cheng,et al.  Magnetic Resonance Imaging: Physical Principles and Sequence Design , 1999 .

[63]  Hiroto Nakajima,et al.  Dynamic MR imaging of the carotid wall , 1999, Journal of magnetic resonance imaging : JMRI.

[64]  P. Tofts,et al.  Measurement of the blood‐brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts , 1991, Magnetic resonance in medicine.

[65]  C S Patlak,et al.  Graphical Evaluation of Blood-to-Brain Transfer Constants from Multiple-Time Uptake Data , 1983, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[66]  S. Kety,et al.  THE NITROUS OXIDE METHOD FOR THE QUANTITATIVE DETERMINATION OF CEREBRAL BLOOD FLOW IN MAN: THEORY, PROCEDURE AND NORMAL VALUES. , 1948, The Journal of clinical investigation.