Class-specific feature sets in classification

In this correspondence, we present a new approach to the design of probabilistic classifiers that circumvents the dimensionality problem. Rather than working with a common high-dimensional feature set, the classifier is written in terms of likelihood ratios with respect to a common class using sufficient statistics chosen specifically for each class.

[1]  R. L. Streit A neural network for optimum Neyman-Pearson classification , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[2]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[3]  Heikki Riittinen,et al.  Spectral classification of phonemes by learning subspaces , 1979, ICASSP.

[4]  P. M. Baggenstoss STRUCTURAL LEARNING FOR CLASSIFICATION OF HIGH DIMENSIONAL DATA , 1997 .

[5]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[6]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[7]  Shigeru Katagiri,et al.  Discriminative metric design for robust pattern recognition , 1997, IEEE Trans. Signal Process..

[8]  Olivier Y. de Vel,et al.  Comparative analysis of statistical pattern recognition methods in high dimensional settings , 1994, Pattern Recognit..

[9]  Van Trees,et al.  Detection, Estimation, and Modulation Theory. Part 1 - Detection, Estimation, and Linear Modulation Theory. , 1968 .

[10]  Leonid I. Perlovsky,et al.  A model-based neural network for transient signal processing , 1994, Neural Networks.

[11]  Vladimir Vapnik,et al.  Methods of Pattern Recognition , 2000 .

[12]  Anil K. Jain,et al.  Small Sample Size Effects in Statistical Pattern Recognition: Recommendations for Practitioners , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Robin Sibson,et al.  What is projection pursuit , 1987 .

[14]  H. V. Trees Detection, Estimation, And Modulation Theory , 2001 .

[15]  R. Fisher The Advanced Theory of Statistics , 1943, Nature.

[16]  David W. Scott,et al.  Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.

[17]  Erkki Oja,et al.  Subspace methods of pattern recognition , 1983 .

[18]  Steven Kay,et al.  Sufficiency, classification, and the class-specific feature theorem , 2000, IEEE Trans. Inf. Theory.

[19]  S. Katagiri,et al.  Discriminative Subspace Method for Minimum Error Pattern Recognition , 1995, Proceedings of 1995 IEEE Workshop on Neural Networks for Signal Processing.

[20]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[21]  Satosi Watanabe,et al.  Knowing and guessing , 1969 .

[22]  Robert N. McDonough,et al.  Detection of signals in noise , 1971 .