Vision-Based Detection and Distance Estimation of Micro Unmanned Aerial Vehicles

Detection and distance estimation of micro unmanned aerial vehicles (mUAVs) is crucial for (i) the detection of intruder mUAVs in protected environments; (ii) sense and avoid purposes on mUAVs or on other aerial vehicles and (iii) multi-mUAV control scenarios, such as environmental monitoring, surveillance and exploration. In this article, we evaluate vision algorithms as alternatives for detection and distance estimation of mUAVs, since other sensing modalities entail certain limitations on the environment or on the distance. For this purpose, we test Haar-like features, histogram of gradients (HOG) and local binary patterns (LBP) using cascades of boosted classifiers. Cascaded boosted classifiers allow fast processing by performing detection tests at multiple stages, where only candidates passing earlier simple stages are processed at the preceding more complex stages. We also integrate a distance estimation method with our system utilizing geometric cues with support vector regressors. We evaluated each method on indoor and outdoor videos that are collected in a systematic way and also on videos having motion blur. Our experiments show that, using boosted cascaded classifiers with LBP, near real-time detection and distance estimation of mUAVs are possible in about 60 ms indoors (1032×778 resolution) and 150 ms outdoors (1280×720 resolution) per frame, with a detection rate of 0.96 F-score. However, the cascaded classifiers using Haar-like features lead to better distance estimation since they can position the bounding boxes on mUAVs more accurately. On the other hand, our time analysis yields that the cascaded classifiers using HOG train and run faster than the other algorithms.

[1]  Bernhard Schölkopf,et al.  New Support Vector Algorithms , 2000, Neural Computation.

[2]  Antonio Torralba,et al.  Object Detection and Localization Using Local and Global Features , 2006, Toward Category-Level Object Recognition.

[3]  Roland Siegwart,et al.  Vision-Controlled Micro Flying Robots: From System Design to Autonomous Navigation and Mapping in GPS-Denied Environments , 2014, IEEE Robotics & Automation Magazine.

[4]  Youmin Zhang,et al.  A survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniques , 2015 .

[5]  Feng Lin,et al.  Vision-based detection and pose estimation for formation of micro aerial vehicles , 2014, 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV).

[6]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[7]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[8]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[9]  Shengcai Liao,et al.  Face Detection Based on Multi-Block LBP Representation , 2007, ICB.

[10]  Sanjiv Singh,et al.  A cascaded method to detect aircraft in video imagery , 2011, Int. J. Robotics Res..

[11]  Luc Van Gool,et al.  Coupled Detection and Trajectory Estimation for Multi-Object Tracking , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[12]  Libor Preucil,et al.  Low-cost embedded system for relative localization in robotic swarms , 2013, 2013 IEEE International Conference on Robotics and Automation.

[13]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[14]  Ioannis M. Rekleitis,et al.  Visual Motion Estimation based on Motion Blur Interpretation , 1995 .

[15]  Feng Lin,et al.  Vision-based formation for UAVs , 2014, 11th IEEE International Conference on Control & Automation (ICCA).

[16]  Alois Knoll,et al.  Intuitive robot tasks with augmented reality and virtual obstacles , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[17]  John K. Tsotsos,et al.  50 Years of object recognition: Directions forward , 2013, Comput. Vis. Image Underst..

[18]  Vladislav Gavrilets,et al.  A low SWaP implementation of high integrity relative navigation for small UAS , 2014, 2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014.

[19]  Luc Van Gool,et al.  Cascaded Confidence Filtering for Improved Tracking-by-Detection , 2010, ECCV.

[20]  Dario Floreano,et al.  Audio-based Relative Positioning System for Multiple Micro Air Vehicle Systems , 2013, Robotics: Science and Systems.

[21]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[22]  Matthew J. Rutherford,et al.  Radar-based detection and identification for miniature air vehicles , 2011, 2011 IEEE International Conference on Control Applications (CCA).

[23]  Libor Preucil,et al.  A Practical Multirobot Localization System , 2014, J. Intell. Robotic Syst..

[24]  Shengcai Liao,et al.  Learning Multi-scale Block Local Binary Patterns for Face Recognition , 2007, ICB.

[25]  Xianku Zhang,et al.  A simple PSF parameters estimation method for the de-blurring of linear motion blurred images using wiener filter in OpenCV , 2012, 2012 International Conference on Systems and Informatics (ICSAI2012).

[26]  Takeo Kanade,et al.  Neural Network-Based Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Antonio Criminisi,et al.  Object categorization by learned universal visual dictionary , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[28]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[29]  Pietro Perona,et al.  Pedestrian Detection: An Evaluation of the State of the Art , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Toon Goedemé,et al.  How to Choose the Best Embedded Processing Platform for on-Board UAV Image Processing ? , 2015, VISAPP.

[31]  Vijay Kumar,et al.  Initialization-Free Monocular Visual-Inertial State Estimation with Application to Autonomous MAVs , 2014, ISER.

[32]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[33]  Roland Siegwart,et al.  BRISK: Binary Robust invariant scalable keypoints , 2011, 2011 International Conference on Computer Vision.

[34]  Sanjiv Singh,et al.  Learning to Detect Aircraft at Low Resolutions , 2008, ICVS.

[35]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[36]  Chris Melhuish,et al.  Autonomous Minimalist Following In Three Dimensions: A Study with Small-Scale Dirigibles , 2001 .

[37]  Stéphane Viollet,et al.  HyperCube: A Small Lensless Position Sensing Device for the Tracking of Flickering Infrared LEDs , 2015, Sensors.

[38]  Tomaso A. Poggio,et al.  A general framework for object detection , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[39]  Ramakant Nevatia,et al.  Robust Object Tracking by Hierarchical Association of Detection Responses , 2008, ECCV.

[40]  James F. Roberts Enabling Collective Operation of Indoor Flying Robots , 2011 .

[41]  Roland Siegwart,et al.  Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS), 2013. , 2013 .

[42]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[43]  Thomas Serre,et al.  Robust Object Recognition with Cortex-Like Mechanisms , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Vijay Kumar,et al.  Autonomous deployment of swarms of micro-aerial vehicles in cooperative surveillance , 2014, 2014 International Conference on Unmanned Aircraft Systems (ICUAS).

[45]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[46]  Jason J. Ford,et al.  Airborne vision‐based collision‐detection system , 2011, J. Field Robotics.

[47]  Dario Floreano,et al.  3-D relative positioning sensor for indoor flying robots , 2012, Autonomous Robots.

[48]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[49]  Matthew J. Rutherford,et al.  UAV-borne X-band radar for collision avoidance , 2013, Robotica.

[50]  S. Umeyama,et al.  Least-Squares Estimation of Transformation Parameters Between Two Point Patterns , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  Matti Pietikäinen,et al.  Performance evaluation of texture measures with classification based on Kullback discrimination of distributions , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[52]  Dimitrios G. Kottas,et al.  Camera-IMU-based localization: Observability analysis and consistency improvement , 2014, Int. J. Robotics Res..

[53]  Vincent Lepetit,et al.  BRIEF: Binary Robust Independent Elementary Features , 2010, ECCV.

[54]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[55]  Aníbal Ollero,et al.  Multi-Unmanned Aerial Vehicle (UAV) Cooperative Fault Detection Employing Differential Global Positioning (DGPS), Inertial and Vision Sensors , 2009, Sensors.

[56]  Roland Siegwart,et al.  Optimal surveillance coverage for teams of micro aerial vehicles in GPS-denied environments using onboard vision , 2012, Auton. Robots.

[57]  I. Colomina,et al.  Unmanned aerial systems for photogrammetry and remote sensing: A review , 2014 .

[58]  Tom Drummond,et al.  Machine Learning for High-Speed Corner Detection , 2006, ECCV.

[59]  Sanjiv Singh,et al.  Passive, Long-Range Detection of Aircraft: Towards a Field Deployable Sense and Avoid System , 2009, FSR.

[60]  Suranga Hettiarachchi,et al.  Trilateration Localization for Multi-robot Teams , 2008, ICINCO-RA.

[61]  Eli Blevis,et al.  Drones , 2015 .

[62]  Bruce A. MacDonald,et al.  A Real-Time Method to Detect and Track Moving Objects (DATMO) from Unmanned Aerial Vehicles (UAVs) Using a Single Camera , 2012, Remote. Sens..

[63]  Thomas G. Dietterich Multiple Classifier Systems , 2000, Lecture Notes in Computer Science.

[64]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[65]  Jiebo Luo,et al.  Learning multi-label scene classification , 2004, Pattern Recognit..

[66]  Mei-Chen Yeh,et al.  Fast Human Detection Using a Cascade of Histograms of Oriented Gradients , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[67]  Dario Floreano,et al.  Indoor navigation with a swarm of flying robots , 2012, 2012 IEEE International Conference on Robotics and Automation.

[68]  Andre Gaschler,et al.  Real-Time Marker-Based Motion Tracking: Application to Kinematic Model Estimation of a Humanoid Robot , 2011 .

[69]  Rainer Lienhart,et al.  An extended set of Haar-like features for rapid object detection , 2002, Proceedings. International Conference on Image Processing.

[70]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using orthonormal matrices , 1988 .

[71]  Mark Hedley,et al.  Fast corner detection , 1998, Image Vis. Comput..

[72]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[73]  Roland Siegwart,et al.  Collaborative stereo , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[74]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[75]  Vijay Kumar,et al.  Vision-based state estimation for autonomous rotorcraft MAVs in complex environments , 2013, 2013 IEEE International Conference on Robotics and Automation.

[76]  G. C. H. E. de Croon,et al.  Hear-and-Avoid for Micro Air Vehicles , 2010 .

[77]  P. KaewTrakulPong,et al.  An Improved Adaptive Background Mixture Model for Real-time Tracking with Shadow Detection , 2002 .

[78]  François Michaud,et al.  Ultrasonic relative positioning for multi-robot systems , 2008, 2008 IEEE International Conference on Robotics and Automation.

[79]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[80]  Rahul Mangharam,et al.  Cooperative Flight Guidance of Autonomous Unmanned Aerial Vehicles , 2011 .

[81]  Lihua Xie,et al.  Multi-Agent Cooperative Target Search , 2014, Sensors.

[82]  Tamás Vicsek,et al.  Outdoor flocking and formation flight with autonomous aerial robots , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[83]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[84]  Eija Honkavaara,et al.  Point Cloud Generation from Aerial Image Data Acquired by a Quadrocopter Type Micro Unmanned Aerial Vehicle and a Digital Still Camera , 2012, Sensors.

[85]  Y. Nishida,et al.  Omnidirectional ultrasonic location sensor , 2005, IEEE Sensors, 2005..

[86]  P. Jaccard THE DISTRIBUTION OF THE FLORA IN THE ALPINE ZONE.1 , 1912 .

[87]  Pierre Vandergheynst,et al.  FREAK: Fast Retina Keypoint , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[88]  Patrick J. Flynn,et al.  A Survey Of Free-Form Object Representation and Recognition Techniques , 2001, Comput. Vis. Image Underst..