Doubling nodal solutions to the Yamabe equation in Rn with maximal rank

Abstract We construct a new family of entire solutions to the Yamabe equation − Δ u = n ( n − 2 ) 4 | u | 4 n − 2 u  in  D 1 , 2 ( R n ) . If n = 3 our solutions have maximal rank, being the first example in odd dimension. Our construction has analogies with the doubling of the equatorial spheres in the construction of minimal surfaces in S 3 ( 1 ) .

[1]  Basilis Gidas,et al.  Asymptotic symmetry and local behavior of semilinear elliptic equations with critical sobolev growth , 1989 .

[2]  N. Kapouleas Doubling and Desingularization Constructions for Minimal Surfaces , 2010, 1012.5788.

[3]  G. Talenti,et al.  Best constant in Sobolev inequality , 1976 .

[4]  F. Merle,et al.  Universality of the blow-up profile for small type II blow-up solutions of energy-critical wave equation: the non-radial case , 2010, 1003.0625.

[5]  Minimal Surfaces in the Round Three‐Sphere by Doubling the Equatorial Two‐Sphere, II , 2019, Communications on Pure and Applied Mathematics.

[6]  Peter J. McGrath,et al.  Minimal Surfaces in the Round Three‐Sphere by Doubling the Equatorial Two‐Sphere, II , 2014, Communications on Pure and Applied Mathematics.

[7]  F. Merle,et al.  Profiles of bounded radial solutions of the focusing, energy-critical wave equation , 2012, 1201.4986.

[8]  F. Merle,et al.  Soliton resolution along a sequence of times for the focusing energy critical wave equation , 2016, 1601.01871.

[9]  Juncheng Wei,et al.  Desingularization of Clifford torus and nonradial solutions to the Yamabe problem with maximal rank , 2017, Journal of Functional Analysis.

[10]  F. Merle,et al.  Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation , 2006, math/0610801.

[11]  F. Merle,et al.  Solutions of the focusing nonradial critical wave equation with the compactness property , 2014, 1402.0365.

[12]  F. Merle,et al.  Universality of blow-up profile for small radial type II blow-up solutions of energy-critical wave equation , 2009, 0910.2594.

[13]  Juncheng Wei,et al.  Nondegeneracy of Nodal Solutions to the Critical Yamabe Problem , 2015 .

[14]  Carlos E. Kenig,et al.  Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case , 2006 .

[15]  O. Rey The role of the green's function in a non-linear elliptic equation involving the critical Sobolev exponent , 1990 .

[16]  T. Aubin Equations differentielles non lineaires et probleme de Yamabe concernant la courbure scalaire , 1976 .

[17]  F. Pacard,et al.  Torus action on S^n and sign changing solutions for conformally invariant equations , 2013 .

[18]  Ding Weiyue,et al.  On a conformally invariant elliptic equation onRn , 1986 .

[19]  F. Pacard,et al.  Large energy entire solutions for the yamabe equation , 2011 .

[20]  D. Tataru,et al.  Slow blow-up solutions for the $H^1({\mathbb R}^3)$ critical focusing semilinear wave equation , 2009 .