Medial prefrontal cortex Transient Receptor Potential Vanilloid Type 1 (TRPV1) in the expression of contextual fear conditioning in Wistar rats

[1]  D. Siniscalco,et al.  TRPV1-dependent and -independent alterations in the limbic cortex of neuropathic mice: impact on glial caspases and pain perception. , 2012, Cerebral cortex.

[2]  F. Guimarães,et al.  The endocannabinoid and endovanilloid systems interact in the rat prelimbic medial prefrontal cortex to control anxiety-like behavior , 2012, Neuropharmacology.

[3]  F. Corrěa,et al.  Medial prefrontal cortex endocannabinoid system modulates baroreflex activity through CB(1) receptors. , 2012, American journal of physiology. Regulatory, integrative and comparative physiology.

[4]  F. Guimarães,et al.  Cannabinoid type 1 receptors and transient receptor potential vanilloid type 1 channels in fear and anxiety—two sides of one coin? , 2012, Neuroscience.

[5]  F. Guimarães,et al.  Opposing Roles for Cannabinoid Receptor Type-1 (CB1) and Transient Receptor Potential Vanilloid Type-1 Channel (TRPV1) on the Modulation of Panic-Like Responses in Rats , 2012, Neuropsychopharmacology.

[6]  H. Kawahara,et al.  Inhibition of fatty acid amide hydrolase unmasks CB1 receptor and TRPV1 channel‐mediated modulation of glutamatergic synaptic transmission in midbrain periaqueductal grey , 2011, British journal of pharmacology.

[7]  D. Siniscalco,et al.  The blockade of the transient receptor potential vanilloid type 1 and fatty acid amide hydrolase decreases symptoms and central sequelae in the medial prefrontal cortex of neuropathic rats , 2011, Molecular pain.

[8]  G. Quirk,et al.  Dissociable Roles of Prelimbic and Infralimbic Cortices, Ventral Hippocampus, and Basolateral Amygdala in the Expression and Extinction of Conditioned Fear , 2011, Neuropsychopharmacology.

[9]  V. Marzo Anandamide serves two masters in the brain , 2010, Nature Neuroscience.

[10]  F. Guimarães,et al.  Cannabinoid CB1 receptors in the medial prefrontal cortex modulate the expression of contextual fear conditioning. , 2010, The international journal of neuropsychopharmacology.

[11]  R. F. Tavares,et al.  Opposite role of infralimbic and prelimbic cortex in the tachycardiac response evoked by acute restraint stress in rats , 2009, Journal of neuroscience research.

[12]  P. Sawchenko,et al.  A Discrete GABAergic Relay Mediates Medial Prefrontal Cortical Inhibition of the Neuroendocrine Stress Response , 2009, The Journal of Neuroscience.

[13]  F. Guimarães,et al.  Anxiolytic-like effects induced by blockade of transient receptor potential vanilloid type 1 (TRPV1) channels in the medial prefrontal cortex of rats , 2009, Psychopharmacology.

[14]  F. Guimarães,et al.  Modulation of anxiety-like behaviour by Transient Receptor Potential Vanilloid Type 1 (TRPV1) channels located in the dorsolateral periaqueductal gray , 2009, European Neuropsychopharmacology.

[15]  F. Guimarães,et al.  Anxiolytic-like effects induced by acute reversible inactivation of the bed nucleus of stria terminalis , 2008, Neuroscience.

[16]  V. Marzo,et al.  Role in anxiety behavior of the endocannabinoid system in the prefrontal cortex. , 2008, Cerebral cortex.

[17]  F. Guimarães,et al.  Effects of reversible inactivation of the dorsal hippocampus on the behavioral and cardiovascular responses to an aversive conditioned context , 2008, Behavioural pharmacology.

[18]  F. Guimarães,et al.  The Expression of Contextual Fear Conditioning Involves Activation of an NMDA Receptor–Nitric Oxide Pathway in the Medial Prefrontal Cortex , 2007, Cerebral cortex.

[19]  P. Sikand,et al.  Potentiation of glutamatergic synaptic transmission by protein kinase C‐mediated sensitization of TRPV1 at the first sensory synapse , 2007, The Journal of physiology.

[20]  S. Nigam,et al.  Biochemistry and pharmacology of endovanilloids. , 2007, Pharmacology & therapeutics.

[21]  F. Holsboer,et al.  Reduced Anxiety, Conditioned Fear, and Hippocampal Long-Term Potentiation in Transient Receptor Potential Vanilloid Type 1 Receptor-Deficient Mice , 2007, The Journal of Neuroscience.

[22]  G. Quirk,et al.  Activity in Prelimbic Cortex Is Necessary for the Expression of Learned, But Not Innate, Fears , 2007, The Journal of Neuroscience.

[23]  J. Xing,et al.  TRPV1 receptor mediates glutamatergic synaptic input to dorsolateral periaqueductal gray (dl-PAG) neurons. , 2007, Journal of neurophysiology.

[24]  S. Rauch,et al.  Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear. , 2006, Learning & memory.

[25]  F. Guimarães,et al.  Effects of cannabidiol and diazepam on behavioral and cardiovascular responses induced by contextual conditioned fear in rats , 2006, Behavioural Brain Research.

[26]  G. Quirk,et al.  Inactivation of the ventromedial prefrontal cortex reduces expression of conditioned fear and impairs subsequent recall of extinction , 2006, The European journal of neuroscience.

[27]  R. Prediger,et al.  The cannabinoid receptor agonist WIN 55,212-2 facilitates the extinction of contextual fear memory and spatial memory in rats , 2006, Psychopharmacology.

[28]  L. Resstel,et al.  Involvement of the medial prefrontal cortex in central cardiovascular modulation in the rat , 2006, Autonomic Neuroscience.

[29]  J. Schulkin,et al.  A neuroendocrine mechanism for sustaining fear , 2005, Trends in Neurosciences.

[30]  J. Krupp,et al.  Capsaicin augments synaptic transmission in the rat medial preoptic nucleus , 2005, Brain Research.

[31]  L. Resstel,et al.  Pressor and tachycardic responses evoked by microinjections of l‐glutamate into the medial prefrontal cortex of unanaesthetized rats , 2005, The European journal of neuroscience.

[32]  L. Csiba,et al.  Expression and distribution of vanilloid receptor 1 (TRPV1) in the adult rat brain. , 2005, Brain research. Molecular brain research.

[33]  E. Baldi,et al.  Footshock intensity and generalization in contextual and auditory-cued fear conditioning in the rat , 2004, Neurobiology of Learning and Memory.

[34]  J. Kasckow,et al.  Effects of the vanilloid agonist olvanil and antagonist capsazepine on rat behaviors , 2004, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[35]  John B Davis,et al.  [3H]Resiniferatoxin autoradiography in the CNS of wild-type and TRPV1 null mice defines TRPV1 (VR-1) protein distribution , 2004, Brain Research.

[36]  G. Appendino,et al.  Halogenation of a capsaicin analogue leads to novel vanilloid TRPV1 receptor antagonists , 2003, British journal of pharmacology.

[37]  J. Krause,et al.  The distribution and regulation of vanilloid receptor VR1 and VR1 5′ splice variant RNA expression in rat , 2001, Neuroscience.

[38]  A. Verberne,et al.  Regional haemodynamic responses to activation of the medial prefrontal cortex depressor region , 2001, Brain Research.

[39]  L. Petrocellis,et al.  Anandamide: some like it hot. , 2001, Trends in pharmacological sciences.

[40]  V. Marzo,et al.  New perspectives on enigmatic vanilloid receptors , 2000, Trends in Neurosciences.

[41]  P. Blumberg,et al.  Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[42]  P. Blumberg,et al.  Vanilloid (Capsaicin) receptors and mechanisms. , 1999, Pharmacological reviews.

[43]  A. Verberne,et al.  Cortical Modulation of theCardiovascular System , 1998, Progress in Neurobiology.

[44]  A. Verberne,et al.  Cortical modulation of the cardiovascular system. , 1998, Progress in neurobiology.

[45]  I. McGregor,et al.  Modulation of anxiety-related behaviours following lesions of the prelimbic or infralimbic cortex in the rat , 1997, Brain Research.

[46]  D. Julius,et al.  The capsaicin receptor: a heat-activated ion channel in the pain pathway , 1997, Nature.

[47]  A. Piper,et al.  Capsazepine block of voltage‐activated calcium channels in adult rat dorsal root ganglion neurones in culture , 1997, British journal of pharmacology.

[48]  C H Beck,et al.  Conditioned fear-induced changes in behavior and in the expression of the immediate early gene c-fos: with and without diazepam pretreatment , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  G. Berntson,et al.  Cardiovascular effects of the benzodiazepine receptor partial inverse agonist FG 7142 in rats , 1994, Behavioural Brain Research.

[50]  E. Neafsey,et al.  The effect of medial frontal cortex lesions on cardiovascular conditioned emotional responses in the rat , 1994, Brain Research.

[51]  E. Neafsey,et al.  The effect of medial frontal cortex lesions on respiration, "freezing," and ultrasonic vocalizations during conditioned emotional responses in rats. , 1991, Cerebral cortex.

[52]  D. Weinberger,et al.  Ibotenic acid lesions of the medial prefrontal cortex potentiate FG-7142-induced attenuation of exploratory activity in the rat , 1990, Pharmacology Biochemistry and Behavior.

[53]  Joseph E LeDoux,et al.  Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[55]  M. Fanselow,et al.  Conditional and unconditional components of post-shock freezing , 1980, The Pavlovian journal of biological science.

[56]  D C Blanchard,et al.  Passive and active reactions to fear-eliciting stimuli. , 1969, Journal of comparative and physiological psychology.

[57]  B. Pitt Psychopharmacology , 1968, Mental Health.