Enhancement-Mode $\beta$ -Ga2O3 Metal–Oxide–Semiconductor Field-Effect Solar-Blind Phototransistor With Ultrahigh Detectivity and Photo-to-Dark Current Ratio

An enhancement-mode <inline-formula> <tex-math notation="LaTeX">$\beta $ </tex-math></inline-formula>-Ga<sub>2</sub>O<sub>3</sub> metal–oxide–semiconductor field-effect solar-blind phototransistor on Si-doped homoepitaxial film grown by molecular beam epitaxy is demonstrated in this letter. Gate-recess process was employed to fully deplete the Ga<sub>2</sub>O<sub>3</sub> channel to achieve positive threshold voltage <inline-formula> <tex-math notation="LaTeX">${V}_{{\textsf {th}}}$ </tex-math></inline-formula> (7 V), which broadens the operating range of the solar-blind phototransistor. The dark current of about 0.7 pA is extremely low. Under 254-nm light illumination of 63 <inline-formula> <tex-math notation="LaTeX">$\mu \text{W}$ </tex-math></inline-formula>/cm<sup>2</sup>, the change of drain current reaches more than 6 orders of magnitude. Record high detectivity of 1.3 <inline-formula> <tex-math notation="LaTeX">$\boldsymbol {\times }\,\,10^{{\textsf {16}}}$ </tex-math></inline-formula> Jones and photo-to-dark current ratio of <inline-formula> <tex-math notation="LaTeX">$1.1\,\,{\boldsymbol {\times }}\,\,10^{{\textsf {6}}}$ </tex-math></inline-formula> are obtained, respectively. In addition, the rise and decay time are as short as 100 and 30 ms, respectively. High responsivity of <inline-formula> <tex-math notation="LaTeX">$3\,\,\boldsymbol {\times }\,\, 10^{{\textsf {3}}}$ </tex-math></inline-formula> A/W and external quantum efficiency of <inline-formula> <tex-math notation="LaTeX">$1.5\,\,\boldsymbol {\times }\,\,10^{{\textsf {6}}}$ </tex-math></inline-formula>% are also achieved with apparent solar-blind photodetection.

[1]  S. Rajan,et al.  MBE-Grown $\beta$ -Ga2O3-Based Schottky UV-C Photodetectors With Rectification Ratio ~107 , 2018, IEEE Photonics Technology Letters.

[2]  Weihua Tang,et al.  Self-Powered Ultraviolet Photodetector with Superhigh Photoresponsivity (3.05 A/W) Based on the GaN/Sn:Ga2O3 pn Junction. , 2018, ACS nano.

[3]  X. Tao,et al.  Ga2O3 Field-Effect-Transistor-Based Solar-Blind Photodetector With Fast Response and High Photo-to-Dark Current Ratio , 2018, IEEE Electron Device Letters.

[4]  C. Shan,et al.  Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging , 2018 .

[5]  S. Rajan,et al.  Demonstration of zero bias responsivity in MBE grown β-Ga2O3 lateral deep-UV photodetector , 2018 .

[6]  Neeraj Goel,et al.  Ultrahigh Performance of Self-Powered β-Ga2O3 Thin Film Solar-Blind Photodetector Grown on Cost-Effective Si Substrate Using High-Temperature Seed Layer , 2018 .

[7]  Caofeng Pan,et al.  Piezo‐Phototronic Effect Modulated Deep UV Photodetector Based on ZnO‐Ga2O3 Heterojuction Microwire , 2018 .

[8]  Weihua Tang,et al.  Construction of GaN/Ga2O3 p–n junction for an extremely high responsivity self-powered UV photodetector , 2017 .

[9]  Hai Lu,et al.  Solar-Blind Photodetector with High Avalanche Gains and Bias-Tunable Detecting Functionality Based on Metastable Phase α-Ga2O3/ZnO Isotype Heterostructures. , 2017, ACS applied materials & interfaces.

[10]  Z. Mei,et al.  Room‐Temperature Fabricated Amorphous Ga2O3 High‐Response‐Speed Solar‐Blind Photodetector on Rigid and Flexible Substrates , 2017 .

[11]  Y. Hao,et al.  One-step exfoliation of ultra-smooth β-Ga2O3 wafers from bulk crystal for photodetectors , 2017 .

[12]  Y. Zhang,et al.  Ultrahigh-Responsivity, Rapid-Recovery, Solar-Blind Photodetector Based on Highly Nonstoichiometric Amorphous Gallium Oxide , 2017 .

[13]  James S. Speck,et al.  Vertical solar blind Schottky photodiode based on homoepitaxial Ga2O3 thin film , 2017, OPTO.

[14]  Jinsong Huang,et al.  Detecting 100 fW cm−2 Light with Trapped Electron Gated Organic Phototransistors , 2017, Advanced materials.

[15]  Lin-Bao Luo,et al.  Graphene‐β‐Ga2O3 Heterojunction for Highly Sensitive Deep UV Photodetector Application , 2016, Advanced materials.

[16]  Pingping Yu,et al.  Ultrasensitive Self-Powered Solar-Blind Deep-Ultraviolet Photodetector Based on All-Solid-State Polyaniline/MgZnO Bilayer. , 2016, Small.

[17]  Weihua Tang,et al.  Enhanced Ga2O3/SiC ultraviolet photodetector with graphene top electrodes , 2016 .

[18]  Wei Liu,et al.  Monodispersed hierarchical ZnGa2O4 microflowers for self-powered solar-blind detection , 2016 .

[19]  Min-Chul Park,et al.  Ultrasensitive PbS quantum-dot-sensitized InGaZnO hybrid photoinverter for near-infrared detection and imaging with high photogain , 2016 .

[20]  Ahmed A. Al-Ghamdi,et al.  New concept ultraviolet photodetectors , 2015 .

[21]  Shinji Nakagomi,et al.  Deep ultraviolet photodiodes based on the β-Ga2O3/GaN heterojunction , 2015 .

[22]  D. Wuu,et al.  Pulsed laser deposition of gallium oxide films for high performance solar-blind photodetectors , 2015 .

[23]  Z. Mei,et al.  Monolithic color-selective ultraviolet (266-315 nm) photodetector based on a wurtzite MgxZn1-xO film , 2014 .

[24]  D. Shen,et al.  High-performance solar-blind ultraviolet photodetector based on mixed-phase ZnMgO thin film , 2014 .

[25]  W. Hsu,et al.  A Simple Passivation Technique for AlGaN/GaN Ultraviolet Schottky Barrier Photodetector , 2014, IEEE Photonics Technology Letters.

[26]  Manijeh Razeghi,et al.  AlxGa1-xN-based back-illuminated solar-blind photodetectors with external quantum efficiency of 89% , 2013 .

[27]  Huili Liang,et al.  Dual-band MgZnO ultraviolet photodetector integrated with Si , 2013 .

[28]  Ray-Hua Horng,et al.  Thermal annealing effect on material characterizations of β-Ga2O3 epilayer grown by metal organic chemical vapor deposition , 2013 .

[29]  Z. Mei,et al.  Controlled Growth of High‐Quality ZnO‐Based Films and Fabrication of Visible‐Blind and Solar‐Blind Ultra‐Violet Detectors , 2009 .

[30]  Woong Kim,et al.  ZnO nanowire field‐effect transistor as a UV photodetector; optimization for maximum sensitivity , 2009 .

[31]  U. Schade,et al.  Improved performance of large‐area InP/InGaAs metal‐semiconductor‐metal photodetectors by sulfur passivation , 1994 .

[32]  S. Rajan,et al.  Advances in Ga2O3 solar-blind UV photodetectors , 2019, Gallium Oxide.