FPGA implementation of a cellular univariate estimation of distribution algorithm and block-based neural network as an evolvable hardware

This paper presents a hardware implementation of evolvable block-based neural network (BBNN) amd a kind of EDAs called cellular compact genetic algorithm (CCGA) in FPGA. The CCGA and BBNN have cellular-like and array-like structures which are suitable for hardware implementation. The implemented hardware demonstrates the completely intrinsic online evolution in hardware without software running on microprocessor s. This work contributes to the field of evolvable hardware by proposing CCGA and a layer-based architecture to an integration of BBNN and CCGA as a kind of evolvable hardware. In addition, the proposed CCGA efficiently solves the scalable issues by scaling up to the size of BBNN. The presented approach demonstrates a new kind of evolvable hardware.

[1]  Moshe Sipper,et al.  Evolution of Parallel Cellular Machines , 1997, Lecture Notes in Computer Science.

[2]  Moshe Sipper,et al.  Evolution of Parallel Cellular Machines: The Cellular Programming Approach , 1997 .

[3]  John C. Gallagher,et al.  A family of compact genetic algorithms for intrinsic evolvable hardware , 2004, IEEE Transactions on Evolutionary Computation.

[4]  Hiroshi Yokoi,et al.  A Gate-Level EHW Chip: Implementing GA Operations and Reconfigurable Hardware on a Single LSI , 1998, ICES.

[5]  David E. Goldberg,et al.  The compact genetic algorithm , 1999, IEEE Trans. Evol. Comput..

[6]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[7]  Ashok Samal,et al.  HGA: A Hardware-Based Genetic Algorithm , 1995, Third International ACM Symposium on Field-Programmable Gate Arrays.

[8]  Andrew M. Tyrrell,et al.  Safe intrinsic evolution of Virtex devices , 2000, Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware.

[9]  Prabhas Chongstitvatana,et al.  A Cooperative Approach to Compact Genetic Algorithm for Evolvable Hardware , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[10]  Seong-Gon Kong,et al.  Block-based neural networks , 2001, IEEE Trans. Neural Networks.

[11]  Martin Pelikan,et al.  Scalable Optimization via Probabilistic Modeling , 2006, Studies in Computational Intelligence.

[12]  Seong G. Kong,et al.  FPGA Implementation of Evolvable Block-based Neural Networks , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[13]  Xin Yao,et al.  Introduction to Evolvable Hardware , 2006, Evolvable Hardware.

[14]  Yang Zhang,et al.  Digital circuit design using intrinsic evolvable hardware , 2004, Proceedings. 2004 NASA/DoD Conference on Evolvable Hardware, 2004..

[15]  Shawki Areibi,et al.  The Impact of Arithmetic Representation on Implementing MLP-BP on FPGAs: A Study , 2007, IEEE Transactions on Neural Networks.

[16]  Prabhas Chongstitvatana,et al.  A hardware implementation of the Compact Genetic Algorithm , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[17]  Heng Liu,et al.  Intrinsic evolvable hardware implementation of a robust biological development model for digital systems , 2005, 2005 NASA/DoD Conference on Evolvable Hardware (EH'05).

[18]  Xavier Llorà,et al.  Towards billion-bit optimization via a parallel estimation of distribution algorithm , 2007, GECCO '07.

[19]  Garrison W. Greenwood,et al.  Introduction to evolvable hardware , 2006 .

[20]  Julian Francis Miller,et al.  Aspects of Digital Evolution: Evolvability and Architecture , 1998, PPSN.

[21]  Erick Cantú-Paz,et al.  Efficient and Accurate Parallel Genetic Algorithms , 2000, Genetic Algorithms and Evolutionary Computation.

[22]  S. Himavathi,et al.  Feedforward Neural Network Implementation in FPGA Using Layer Multiplexing for Effective Resource Utilization , 2007, IEEE Transactions on Neural Networks.

[23]  Andrew M. Tyrrell,et al.  Evolving Image Processing Operations for an Evolvable Hardware Environment , 2003, ICES.

[24]  Vaughn Betz,et al.  Architecture and CAD for Deep-Submicron FPGAS , 1999, The Springer International Series in Engineering and Computer Science.

[25]  Lukás Sekanina Virtual Reconfigurable Circuits for Real-World Applications of Evolvable Hardware , 2003, ICES.

[26]  Gunnar Tufte,et al.  An evolvable hardware FPGA for adaptive hardware , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[27]  Kenji Toda,et al.  Real-world applications of analog and digital evolvable hardware , 1999, IEEE Trans. Evol. Comput..

[28]  Jose Miguel Puerta,et al.  Improving model combination through local search in parallel univariate EDAs , 2005, 2005 IEEE Congress on Evolutionary Computation.

[29]  David E. Goldberg,et al.  Multiple-Deme Parallel Estimation of Distribution Algorithms: Basic Framework and Application , 2003, PPAM.